Apache Kafka is a messaging solution where you have topics to pass on your information. You can send messages to multiple topics.
We need to manage limited resources. Additionally, we can send or push messages through a specified port. This is a significant feature because, unlike traditional queues, Kafka uses a cluster of nodes, making it easy to integrate with various algorithms. This clustering is an advantage and a key feature of Kafka, providing good interaction and scalability.
For example, when you want to send a message to inform all your clients about a new feature, you can publish that message to a single topic in Apache Kafka. This allows all clients subscribed to that topic to receive the message. On the other hand, if you need to send billing information to a specific customer, you can publish that message on a topic dedicated to that customer. This message can then be sent as an SMS to the customer, allowing them to view it on their mobile device.
Apache Kafka is different in its design. If you have topics around the front end of clusters in the facility, it is scalable. The software is scalable to handle and process data. However, it might not be suitable for handling specific types of images or media files. Other than that, it should handle the rest of the data processing needs.
There are no multiple versions, which simplifies the process of granting access with Kaspersky. Every message is accurately delivered. However, Kafka does not support sending messages directly. You need to publish messages finalization. If you want to resend a message, you must resend it manually. Kafka does not automatically handle this. Another thing is the need for a redo option if an issue occurs. If a message is not sent properly, it can be retransmitted within the core system. You should enable the gateway in your program for it to function correctly. Messages will not be delivered or refreshed unless you enable the direct replay option in the product settings.
I have been using Apache Kafka since 2020-21
The initial setup of Apache Kafka is challenging and requires experience. Each message should always receive a response, so prioritizing traffic is essential. Furthermore, the client or consumer must always be in sync, or the message will not be processed.
One pair of nodes is sufficient for the system. If our other system requires more than five nodes, it might not be feasible. Currently, other components are functioning as expected. The Kafka setup won't take much time.
When using Apache Kafka, it’s important to manage different environments carefully to avoid confusion. For instance, you can configure different client applications for producing and consuming messages. Ensure that the configurations for each environment (development, testing, production, etc.) are separated. This includes managing source code and data appropriately to maintain security and efficiency. Proper management of Kafka assets and operations phases is crucial for a smooth workflow.
I recommend Apache Kafka since it is extremely fast, stable and has been used for a very long time. We haven't encountered any major issues or concerns regarding its performance and customer service.
Overall, I rate the solution a nine out of ten.