Try our new research platform with insights from 80,000+ expert users
reviewer1973826 - PeerSpot reviewer
Senior Principal Architect at a real estate/law firm with 5,001-10,000 employees
Real User
A NoSQL framework where you can scale queries to petabytes of data
Pros and Cons
  • "The query tool is scalable and allows for petabytes of data."
  • "The solution hinges on Google patterns so continued improvement is important."

What is our primary use case?

Our company uses the solution as a data warehouse for implementing machine learning use cases and queries. 

What is most valuable?

The query tool is scalable and allows for petabytes of data. 

The NoSQL model and feeds for machine learning are based on the support of competent technologies. 

The solution includes plenty of additional features. 

What needs improvement?

The solution hinges on Google patterns so continued improvement is important. 

For how long have I used the solution?

I have been using the solution for two years. 

Buyer's Guide
BigQuery
December 2024
Learn what your peers think about BigQuery. Get advice and tips from experienced pros sharing their opinions. Updated: December 2024.
824,067 professionals have used our research since 2012.

What do I think about the stability of the solution?

The solution is stable. 

What do I think about the scalability of the solution?

The solution is scalable and we have 200 users with no issues. 

How are customer service and support?

Google has one technical support channel for all products and services. If you place a support ticket, they will respond to you in order of priority. 

How was the initial setup?

There is no setup because the solution resides in the cloud. Once you enable the APIs in the Google Cloud ecosystem, you can start consuming right away. 

What's my experience with pricing, setup cost, and licensing?

The price is a bit high but the technology is worth it. If you do not use the solution in the right way, it will be expensive.

Which other solutions did I evaluate?

There is not an equivalent competitor product because the solution is Google's proprietary technology. 

What other advice do I have?

If you are interested in a NoSQL option, definitely try the solution. 

I rate the solution a ten out of ten. 

Which deployment model are you using for this solution?

Private Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Google
Disclosure: I am a real user, and this review is based on my own experience and opinions.
PeerSpot user
IT Consultant at 18months
Consultant
Top 20
A serverless, scalable and cost-efficient data warehouse solution with seamless integration, real-time analytics, and advanced machine-learning capabilities
Pros and Cons
  • "It stands out in efficiently handling internal actions without the need for manual intervention in tasks like building cubes and defining final dimensions."
  • "The primary hurdle in this migration lies in the initial phase of moving substantial volumes of data to cloud-based platforms."

What is our primary use case?

We have a cloud solution that runs in a centralized mode for a few hundred senior managers who require diverse reports, ranging from daily operational details to more substantial analyses, such as sales trends, movie ticket sales clustering, and reporting.

What is most valuable?

The flexibility of its serverless architecture is advantageous in handling the variable nature of our workloads. Instead of relying on a fixed database cluster with constant costs, it allows you to pay for the resources you consume during peak times. This on-demand pricing model appears to be more cost-effective, particularly when dealing with occasional heavy queries that involve analyzing billions of data points, such as ticket sales for millions of movies. The ability to scale internally using Kubernetes adds another layer of flexibility to our setup, allowing us to adapt to varying demands efficiently. Its fast response times during peak usage make it a suitable choice for our dynamic and variable data processing needs. I appreciate its impressive optimization and automation features, observed during small-scale tests. It stands out in efficiently handling internal actions without the need for manual intervention in tasks like building cubes and defining final dimensions.

What needs improvement?

The primary hurdle in this migration lies in the initial phase of moving substantial volumes of data to cloud-based platforms. This becomes even more pronounced when dealing with terabytes of data. Uploading data to cloud services requires careful consideration and optimization to ensure a smooth and efficient migration, especially when dealing with large datasets.

For how long have I used the solution?

I started using it recently.

What do I think about the scalability of the solution?

It inherently manages scalability with its auto-scaling capabilities. The ability to dynamically adjust resources based on demand is a key factor in optimizing performance and ensuring that our system can handle varying workloads efficiently. We operate as a small company with a modest business scale, handling a few medium-sized projects each year.

How was the initial setup?

The current bottleneck in our migration process primarily revolves around bandwidth issues, especially during the initial data ingestion phase.

What about the implementation team?

The deployment process itself is straightforward and not a source of concern. The real challenge lies in the bandwidth limitations and the time-consuming nature of data uploading. While a comprehensive evaluation is still pending, it's anticipated that the data upload alone might take up to a week or more.

What's my experience with pricing, setup cost, and licensing?

The pricing appears to be competitive for the intended usage scenarios we have in mind.

Which other solutions did I evaluate?

In my evaluation of alternative solutions, I'm exploring Hydra, a columnar version of Postgres with partitioning capabilities. While I'm still learning about its features and performance, it seems promising. Additionally, I'm considering ClickHouse, which has shown exceptional benchmark results. I've completed an initial installation to assess its functionality.

What other advice do I have?

Overall, I would rate it eight out of ten.

Disclosure: I am a real user, and this review is based on my own experience and opinions.
PeerSpot user
Buyer's Guide
BigQuery
December 2024
Learn what your peers think about BigQuery. Get advice and tips from experienced pros sharing their opinions. Updated: December 2024.
824,067 professionals have used our research since 2012.
reviewer1355121 - PeerSpot reviewer
Senior Cyber Security Architect Global ICT at a construction company with 10,001+ employees
Real User
Top 20
A stable solution with out-of-the-box capabilities that can be used for analytics and reporting
Pros and Cons
  • "The solution's reporting, dashboard, and out-of-the-box capabilities match exactly our requirements."
  • "As a product, BigQuery still requires a lot of maturity to accommodate other use cases and to be widely acceptable across other organizations."

What is our primary use case?

We use BigQuery for analytics and reporting.

What is most valuable?

The most valuable feature of BigQuery is its capability to integrate. The product fits pretty well within our ecosystem. The solution's reporting, dashboard, and out-of-the-box capabilities match exactly our requirements.

What needs improvement?

As a product, BigQuery still requires a lot of maturity to accommodate other use cases and to be widely acceptable across other organizations. It's not as old as other applications like Tableau or Power BI, but as long as it's supported by Google, I think it will continue to progress.

For how long have I used the solution?

I have been working with BigQuery for about two years.

What do I think about the stability of the solution?

BigQuery's stability is good. I rate BigQuery a nine out of ten for stability.

What do I think about the scalability of the solution?

We have tested and found that BigQuery's scalability is good. I rate BigQuery a seven to eight out of ten for scalability.

How was the initial setup?

BigQuery's initial was simple because it's provided over the cloud.

What other advice do I have?

BigQuery is suitable for all sorts of business types. Medium and small businesses will find the solution's out-of-the-box use cases more useful.

Overall, I rate BigQuery an eight out of ten.

Disclosure: I am a real user, and this review is based on my own experience and opinions.
PeerSpot user
reviewer2034351 - PeerSpot reviewer
Team Lead Data & Analytics at a hospitality company with 501-1,000 employees
Real User
Good performance, not too expensive, and user-friendly
Pros and Cons
  • "It has a well-structured suite of complimentary tools for data integration and so forth."
  • "When it comes to queries or the code being executed in the data warehouse, the management of this code, like integration with the GitHub repository or the GitLab repository, is kind of complicated, and it's not so direct."

What is our primary use case?

This is a cloud-based data warehouse. 

What is most valuable?

The product is updated automatically without people having to worry about doing anything. It is managed completely by Google. 

The performance is good. It's very user-friendly for people not coming from the technical area. 

It has a very friendly user interface and a console for command line. 

It has a well-structured suite of complimentary tools for data integration and so forth.

What needs improvement?

When it comes to queries or the code being executed in the data warehouse, the management of this code, like integration with the GitHub repository or the GitLab repository, is kind of complicated, and it's not so direct. When people are working on long queries, and so forth, they have to save them. It is a little bit clunky. The interface for saving them and version control is not really doable. We have to support the queries manually.

For how long have I used the solution?

I've used the solution across different companies. I've used it for about six or seven years. 

What's my experience with pricing, setup cost, and licensing?

In my previous company, we were not spending that much. You give more money away to the other tools from GCP. We paid maybe €200 or something like that and no more than that. This year, we pay €170 a month.

What other advice do I have?

We are an end-user.

The product is a software as a service, and therefore, we are always on the latest version. They do everything for us. 

I'd rate the product eight out of ten as it's a very good data warehouse, and it's very easy to learn how to use it. It's very user-friendly. I can have my team handle it, even if they are non-technical and they can be doing a lot of coding there without problems. 

Which deployment model are you using for this solution?

Public Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Google
Disclosure: I am a real user, and this review is based on my own experience and opinions.
PeerSpot user
Shan-Khan - PeerSpot reviewer
Senior Data Scientist at a tech services company with 51-200 employees
Real User
Excellent pricing, fantastic capabilities with online documentation for support
Pros and Cons
  • "When integrating their system into the cloud-based solutions, we were able to increase their efficiency and overall productivity twice compared with their on-premises option."
  • "The initial setup could be improved making it easier to deploy."

What is our primary use case?

Our primary use case is for data processing and searching the data. It is basically a data warehouse. We use BigQuery to process and store the data and gather the data from BigQuery to build machine learning models.

How has it helped my organization?

When integrating their system into the cloud-based solutions, we were able to increase their efficiency and overall productivity twice compared with their on-premises option.

What is most valuable?

The data warehouse has all the features that are contained in the data warehouse solution.

What needs improvement?

The initial setup could be improved making it easier to deploy.

For how long have I used the solution?

I have been using BigQuery for the past three years now.

What do I think about the stability of the solution?

The stability ranks around a seven or an eight on a scale of one to ten.

What do I think about the scalability of the solution?

On a scale of one to ten, the scalability is around an eight.

How are customer service and support?

When it comes to customer support I have found some really good documentation online.

Which solution did I use previously and why did I switch?

When comparing with Azure in the past the difference was the price was cheaper. Google and Azure were offering the same features.

How was the initial setup?

The initial setup is somewhere in the middle between straightforward and complex. You do need some experience or initial skills when setting it up.

What's my experience with pricing, setup cost, and licensing?

The pricing is good and there are no additional costs involved.

What other advice do I have?

I would rate BigQuery a nine out of ten on the overall scale.

Which deployment model are you using for this solution?

Public Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Google
Disclosure: My company has a business relationship with this vendor other than being a customer: Integrator
PeerSpot user
reviewer1473792 - PeerSpot reviewer
Deputy General Manager at a tech vendor with 10,001+ employees
Real User
Gave us 27% performance improvement and reduced costs by about 17%
Pros and Cons
  • "There are some performance features like partitioning, which you can do based on an integer, and it improves the performance a lot."
  • "With other columnar databases like Snowflake, you can actually increase your VM size or increase your machine size, and you can buy more memory and it will start working faster, but that's not available in BigQuery. You have to actually open a ticket and then follow it up with Google support."

What is our primary use case?

BigQuery is a PaaS solution. There's only one version available on Google Cloud. Because it's deployed on cloud, it will update automatically.

What is most valuable?

If I'm collaborating with Google Data Cloud, I can use the cache, and I don't have to pay again and again. There are some performance features like partitioning, which you can do based on an integer, and it improves the performance a lot. There's also the Array function. You can also enable Spark on BigQuery, which is actually faster than any other Spark. If you use Dataproc, Spark on BigQuery is much faster.

Spark will actually eliminate the usage of a lot of Adobe legacy things. It will act as a Spark SQL.

It is not that cost-friendly, but it is very performance-friendly. There are also machine learning features.

What needs improvement?

For example, if I have a query, and I have done everything to improve it, the query will still take 15 minutes. With other columnar databases like Snowflake, you can actually increase your VM size or increase your machine size, and you can buy more memory and it will start working faster, but that's not available in BigQuery. You have to actually open a ticket and then follow it up with Google support.

For how long have I used the solution?

I have been using this solution for two and a half years.

What do I think about the stability of the solution?

BigQuery is very stable. It is getting used a lot.

What do I think about the scalability of the solution?

It is definitely scalable. You do not have to do any configurations. It will be able to handle petabytes of data.

How are customer service and support?

Technical support is excellent. It is Google, and they always provide the best. We haven't needed to contact Google for BigQuery specifically, but I have contacted Google support for other things and they were pretty responsive.

Which solution did I use previously and why did I switch?

I have experience with Snowflake.

What was our ROI?

I was working on a project where we were building systems and loading the data manually. Once we moved to BigQuery, we saw ROI in terms of cost savings. We saw 27% performance improvement in most of our queries. Our total costs were reduced by about 17%. In terms of cost and time, we were able to save effort.

There was some learning and training involved, which lasted six months, so we saw the real ROI after a year.

What other advice do I have?

I would rate this solution 8 out of 10.

My advice is to first identify your use case. If you have Google Cloud then you have two databases to compare, BigQuery and Snowflake. BigQuery is typically used to analyze petabytes of data. If you're looking for transitional query, then you should have a different system. BigQuery cannot handle unstructured data, so that is one thing you have to think about. 

In terms of latency, if you want single-digit millisecond latency then BigQuery is not good. It is very fast, but if you want single-digit millisecond latency, then you probably have to go to a no-SQL database solution.

My suggestion is to analyze your use case and then map it with the BigQuery features.

Which deployment model are you using for this solution?

Public Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Google
Disclosure: My company has a business relationship with this vendor other than being a customer: Partner
PeerSpot user
reviewer1945104 - PeerSpot reviewer
Machine Learning Enginee at a retailer with 201-500 employees
Real User
Able to expand with lots of functionality but needs better machine learning capabilities
Pros and Cons
  • "The setup is simple."
  • "I noticed recently it's more expensive now."

What is our primary use case?

We use BigQuery as a data source.

We mainly use it to do some transformations. Once we collect query data from it, we use other services to do model training or predictions. We don't really utilize all the features provided by BigQuery. We mainly use some basic data transformation options. It also provides some machine learning models.

What is most valuable?

In many functions, it's very similar to Spark Kubernetes. The cluster is good. It'll provide computation capabilities. 

The setup is simple.

It is stable. The performance is good. 

It is a scalable solution. 

We do not find the solution that expensive. 

What needs improvement?

Machine learning could be improved. There are some machine learning models in BigQuery; however, maybe more libraries can be provided. We'd like it extended into the Spark ML library. 

I noticed recently it's more expensive now. I didn't compare them to others, however, and in our team, we don't consider the price of it much.

For how long have I used the solution?

I've been using the solution for several months.

What do I think about the stability of the solution?

It is stable and reliable. There are no bugs or glitches. 

I'd rate the overall stability an eight out of ten. It offers a good level of performance. There are billions of accounts. 

What do I think about the scalability of the solution?

It's scalable. We don't need to worry about scalability issues in our case. For us, it's good enough.

We have millions of customers and thousands of products. 

How are customer service and support?

I've never dealt with technical support. I can't speak to how helpful or responsive they are. We have a bigger team and tend to learn from each other.

Which solution did I use previously and why did I switch?

I also use Spark, which has similar functions. I've also used Databricks. 

I've used BigQuery for a longer time, however, Databricks is easier when it comes to the setup of a complete solution. With BigQuery, we need to develop an intranet solution and set up services and then put them together.

How was the initial setup?

It is my understanding that the initial setup is very straightforward and simple. 

What's my experience with pricing, setup cost, and licensing?

The pricing is fine. 

What other advice do I have?

I'd rate the solution seven out of ten. It's a pretty good product overall. 

Which deployment model are you using for this solution?

Public Cloud
Disclosure: My company has a business relationship with this vendor other than being a customer: Partner
PeerSpot user
Murad Musleh - PeerSpot reviewer
Network Engineer at Yemen Mobile Company, Public Yemeni Joint-Stock Company
Real User
A high-performance solution with a straightforward setup and a reasonable price
Pros and Cons
  • "The initial setup is straightforward."
  • "So our challenge in Yemen is convincing many people to go to cloud services."

What is our primary use case?

I use it for education and training purpose purposes and not for work. At Yemen Mobile, it is prohibited to use cloud services, and all services are on-premises. 90% of our solutions are from Viacom, like VB and Engineers Assistant. We also have IP solutions like Oracle business suite.

What needs improvement?

In Yemen, when you try to convince anyone about cloud services, they believe it is unacceptable and prefer to use on-premises services here in Yemen. So our challenge in Yemen is convincing many people to go to cloud services. There are some success stories where the biggest company in Yemen partnered with Microsoft and SAP and moved to cloud. In the near future, many companies will move to cloud, but it will take some time.

For how long have I used the solution?

I have been using this solution for three months, and it is a cloud-based solution.

What do I think about the stability of the solution?

It is a stable solution.

What do I think about the scalability of the solution?

I am unsure of the scalability because I need to test it with a bigger project.

How are customer service and support?

I have not used technical support.

How was the initial setup?

The initial setup is straightforward.

What's my experience with pricing, setup cost, and licensing?

The price is acceptable.

What other advice do I have?

I rate this solution an eight out of ten. I recommend this solution because Google is a big company, and BigQuery is a very nice product. It is a good product, scalable, and has high performance.

Disclosure: I am a real user, and this review is based on my own experience and opinions.
PeerSpot user
Buyer's Guide
Download our free BigQuery Report and get advice and tips from experienced pros sharing their opinions.
Updated: December 2024
Product Categories
Cloud Data Warehouse
Buyer's Guide
Download our free BigQuery Report and get advice and tips from experienced pros sharing their opinions.