Try our new research platform with insights from 80,000+ expert users

BigQuery vs Dremio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 18, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

BigQuery
Ranking in Cloud Data Warehouse
4th
Average Rating
8.2
Reviews Sentiment
7.3
Number of Reviews
39
Ranking in other categories
No ranking in other categories
Dremio
Ranking in Cloud Data Warehouse
10th
Average Rating
8.6
Reviews Sentiment
7.2
Number of Reviews
7
Ranking in other categories
Data Science Platforms (8th)
 

Mindshare comparison

As of January 2025, in the Cloud Data Warehouse category, the mindshare of BigQuery is 9.1%, up from 7.8% compared to the previous year. The mindshare of Dremio is 4.6%, up from 2.6% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Cloud Data Warehouse
 

Featured Reviews

Sathishkumar Jayaprakash - PeerSpot reviewer
Efficient large dataset handling with seamless service integration
BigQuery allows for very fast access, and it is efficient in handling large datasets compared to other SQL databases. It integrates well with other GCP products, and creating subscriptions in the UI is straightforward. The whole ecosystem of GCP products makes BigQuery beneficial for our data-handling tasks. Additionally, it is more cost-effective compared to alternatives like AWS.
MikeWalker - PeerSpot reviewer
It enables you to manage changes more effectively than any other platform.
Dremio enables you to manage changes more effectively than any other data warehouse platform. There are two things that come into play. One is data lineage. If you are looking at data in Dremio, you may want to know the source and what happened to it along the way or how it may have been transformed in the data pipeline to get to the point where you're consuming it. There's another thing called data providence. They're tied together. Data providence allows you to go back and recreate the data at any particular point in time. It's extremely important for compliance and governance issues because data changes all time. How did it change? What was it three days or months ago? You may have made some decisions based on data that was three months old, so you might need to revisit those. It's essential for things like machine learning and deep learning, where you are generating AI models off data. When the model stops working or doesn't work as expected, you need to figure out why. You have to go back and adjust the datasets used to train the model. We do that through an open-source project called Nessie, which is their basis for providing data lineage and data province capabilities. It's super powerful. Arrow is another open-source project for storing data in memory and performing data query operations. Data sits on a disk in one format. If you want to do anything with data, you have to load it into your computer and put it into memory so you can work with it. Arrow provides a format in memory that enables the whole library to perform various operations on that data. Every vendor has its own way of representing data in memory. They've latched onto an industry standard and developed it so it's open. Now people can use the exact same format in memory to do operations and use the library set to perform functions on data. New developers can decide if they want to develop their own memory format or use one that's already there. Data transfer is a massive problem when you're working with large datasets, doing advanced analytics, and trying to train machine learning or deep learning models. What happens often is companies downsample their data sets to do training on models because transferring and managing data on a deep learning or machine learning platform is too much.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable features of BigQuery is that it supports standard SQL and provides good performance."
"Its integration with other tools like Atlan through a Google Chrome extension is highly beneficial."
"The most valuable aspect of BigQuery is its ability to handle high data workloads without causing friction with our online systems."
"The main thing I like about BigQuery is storage. We did an on-premise BigQuery migration with trillions of records. Usually, we have to deal with insufficient storage on-premises, but in BigQuery, we don't get that because it's like cloud storage, and we can have any number of records. That is one advantage. The next major advantage is the column length. We have some limits on column length on-premises, like 10,000, and we have to design it based on that. However, with BigQuery, we don't need to design the column length at all. It will expand or shrink based on the records it's getting. I can give you a real-life example based on our migration from on-premises to GCP. There was a dimension table with a general number of records, and when we queried that on-premises, like in Apache Spark or Teradata, it took around half an hour to get those records. In BigQuery, it was instant. As it's very fast, you can get it in two or three minutes. That was very helpful for our engineers. Usually, we have to run a query on-premises and go for a break while waiting for that query to give us the results. It's not the case with BigQuery because it instantly provides results when we run it. So, that makes the work fast, it helps a lot, and it helps save a lot of time. It also has a reasonable performance rate and smart tuning. Suppose we need to perform some joins, BigQuery has a smart tuning option, and it'll tune itself and tell us the best way a query can be done in the backend. To be frank, the performance, reliability, and everything else have improved, even the downtime. Usually, on-premise servers have some downtime, but as BigQuery is multiregional, we have storage in three different locations. So, downtime is also not getting impacted. For example, if the Atlantic ocean location has some downtime, or the server is down, we can use data that is stored in Africa or somewhere else. We have three or four storage locations, and that's the main advantage."
"BigQuery processes a substantial amount of data, whether in gigabytes or terabytes, swiftly producing desired data within one or two minutes."
"The product's most valuable features include its scalability and the ability to handle complex queries on large datasets."
"The setup is simple."
"BigQuery is a powerful tool for managing and analyzing large datasets. The versatility of BigQuery extends to its compatibility with external data visualization tools like Power BI and Tableau. This means you not only get query results but can also seamlessly integrate and visualize your data for better insights."
"We primarily use Dremio to create a data framework and a data queue."
"Dremio gives you the ability to create services which do not require additional resources and sterilization."
"Dremio is very easy to use for building queries."
"Dremio allows querying the files I have on my block storage or object storage."
"Everyone uses Dremio in my company; some use it only for the analytics function."
"The most valuable feature of Dremio is it can sit on top of any other data storage, such as Amazon S3, Azure Data Factory, SGFS, or Hive. The memory competition is good. If you are running any kind of materialized view, you'd be running in memory."
"Dremio enables you to manage changes more effectively than any other data warehouse platform. There are two things that come into play. One is data lineage. If you are looking at data in Dremio, you may want to know the source and what happened to it along the way or how it may have been transformed in the data pipeline to get to the point where you're consuming it."
 

Cons

"They could enhance the platform's user accessibility."
"We'd like to have more integrations with other technologies."
"For greater flexibility and ease of use, it would be beneficial if BigQuery offered more third-party add-ons and connectors, particularly for databases that don't have built-in integration options."
"There is a good amount of documentation out there, but they're consistently making changes to the platform, and, like, their literature hasn't been updated on some plans."
"It would be better if BigQuery didn't have huge restrictions. For example, when we migrate from on-premises to on-premise, the data which handles all ebook characters can be handled on-premise. But in BigQuery, we have huge restrictions. If we have some symbols, like a hash or other special characters, it won't accept them. Not in all cases, but it won't accept a few special characters, and when we migrate, we get errors. We need to use Regexp or something similar to replace that with another character. This isn't expected from a high-range technology like BigQuery. It has to adapt all products. For instance, if we have a TV Showroom, the TV symbol will be there in the shop name. Teradata and Apache Spark accept this, but BigQuery won't. This is the primary concern that we had. In the next release, it would be better if the query on the external table also had cache. Right now, we are using a GCS bucket, and in the native table, we have cache. For example, if we query the same table, it won't cost because it will try to fetch the records from the cached result. But when we run queries on the external table a number of times, it won't be cached. That's a major drawback of BigQuery. Only the native table has the cache option, and the external table doesn't. If there is an option to have an external table for cache purposes, it'll be a significant advantage for our organization."
"The solution hinges on Google patterns so continued improvement is important."
"I rate BigQuery six out of 10 for affordability. It could be cheaper."
"There are some limitations in the query latency compared to what it was three years ago."
"It shows errors sometimes."
"Dremio takes a long time to execute large queries or the executing of correlated queries or nested queries. Additionally, the solution could improve if we could read data from the streaming pipelines or if it allowed us to create the ETL pipeline directly on top of it, similar to Snowflake."
"There are performance issues at times due to our limited experience with Dremio, and the fact that we are running it on single nodes using a community version."
"I cannot use the recursive common table expression (CTE) in Dremio because the support page says it's currently unsupported."
"We've faced a challenge with integrating Dremio and Databricks, specifically regarding authentication. It is not shaking hands very easily."
"They have an automated tool for building SQL queries, so you don't need to know SQL. That interface works, but it could be more efficient in terms of the SQL generated from those things. It's going through some growing pains. There is so much value in tools like these for people with no SQL experience. Over time, Dermio will make these capabilities more accessible to users who aren't database people."
"Dremio doesn't support the Delta connector. Dremio writes the IT support for Delta, but the support isn't great. There is definitely room for improvement."
 

Pricing and Cost Advice

"We are above the free threshold, so we are paying around 40 euros per month for BigQuery."
"1 TB is free of cost monthly. If you use more than 1 TB a month, then you need to pay 5 dollars extra for each TB."
"The pricing appears to be competitive for the intended usage scenarios we have in mind."
"The price is a bit high but the technology is worth it."
"One terabyte of data costs $20 to $22 per month for storage on BigQuery and $25 on Snowflake. Snowflake is costlier for one terabyte, but BigQuery charges based on how much data is inserted into the tables. BigQuery charges you based on the amount of data that you handle and not the time in which you handle it. This is why the pricing models are different and it becomes a key consideration in the decision of which platform to use."
"I have tried my own setup using my Gmail ID, and I think it had a $300 limit for free for a new user. That's what Google is offering, and we can register and create a project."
"BigQuery is inexpensive."
"BigQuery pricing can increase quickly. It's a high-priced solution."
"Dremio is less costly competitively to Snowflake or any other tool."
"Right now the cluster costs approximately $200,000 per month and is based on the volume of data we have."
report
Use our free recommendation engine to learn which Cloud Data Warehouse solutions are best for your needs.
831,265 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
17%
Financial Services Firm
14%
Manufacturing Company
12%
Retailer
7%
Financial Services Firm
32%
Computer Software Company
10%
Manufacturing Company
8%
Retailer
4%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about BigQuery?
The initial setup process is easy.
What is your experience regarding pricing and costs for BigQuery?
The price is perceived as expensive, rated at eight out of ten in terms of costliness. Still, it offers significant cost savings.
What needs improvement with BigQuery?
When I execute a query, the dashboard doesn't always present the output seamlessly. Troubleshooting requires opening each pipeline individually, which is time-consuming. Moreover, pricing, the abse...
What do you like most about Dremio?
Dremio allows querying the files I have on my block storage or object storage.
What is your experience regarding pricing and costs for Dremio?
The licensing is very expensive. We need a license to scale as we are currently using the community version.
What needs improvement with Dremio?
There are performance issues at times due to our limited experience with Dremio, and the fact that we are running it on single nodes using a community version. We face certain issues when connectin...
 

Comparisons

 

Learn More

Video not available
 

Overview

 

Sample Customers

Information Not Available
UBS, TransUnion, Quantium, Daimler, OVH
Find out what your peers are saying about BigQuery vs. Dremio and other solutions. Updated: January 2025.
831,265 professionals have used our research since 2012.