Try our new research platform with insights from 80,000+ expert users

BigQuery vs Dremio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 18, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

BigQuery
Ranking in Cloud Data Warehouse
3rd
Average Rating
8.2
Reviews Sentiment
7.2
Number of Reviews
41
Ranking in other categories
No ranking in other categories
Dremio
Ranking in Cloud Data Warehouse
7th
Average Rating
8.6
Reviews Sentiment
7.1
Number of Reviews
8
Ranking in other categories
Data Science Platforms (9th)
 

Mindshare comparison

As of July 2025, in the Cloud Data Warehouse category, the mindshare of BigQuery is 6.5%, down from 8.4% compared to the previous year. The mindshare of Dremio is 10.7%, up from 6.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Cloud Data Warehouse
 

Featured Reviews

Luís Silva - PeerSpot reviewer
Handles large data sets efficiently and offers flexible data management capabilities
The features I find most valuable in this solution are the ability to run and handle large data sets in a very efficient way with multiple types of data, relational as SQL data. It is kind of difficult to explain, but structured data and the ability to handle large data sets are key features. The data integration capabilities in BigQuery were, in fact, an issue at the beginning. There are two types of integrations. As long as integration is within Google, it is pretty simple. When you start to try to connect external clients to that data, it becomes more complex. It is not related to BigQuery, it is related to Google security model, which is not easy to manage. I would not call it an integration issue of BigQuery, I would call it an integration issue of Google security model.
KamleshPant - PeerSpot reviewer
Solution offers quick data connection with an edge in computation
It's almost similar, yet it's better than Starburst in spinning up or connecting to the new source since it's on SaaS. It is a similar experience between the based application and cloud-based application. You just get the source, connect the data, get visualization, get connected, and do whatever you want. They say data reflection is one way where they do the caching and all that. Starburst also does the caching. In Starburst, you have a data product. Here, the data product comes from a reflection perspective. The y are working on a columnar memory map, columnar computation. That will have some edge in computation.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution's reporting, dashboard, and out-of-the-box capabilities match exactly our requirements."
"It has a proprietary way of storing and accessing data in its own data store and is 100% managed without you needing to install anything. There is no need to arrange for any infrastructure to be able to use this solution."
"BigQuery can be used for any type of company. It has the capability of building applications and storing data. It can be used for OLTP or OLAP. It has many other products within the Google space."
"The product’s most valuable feature is its ability to manage the database on the cloud."
"BigQuery processes a substantial amount of data, whether in gigabytes or terabytes, swiftly producing desired data within one or two minutes."
"It has a well-structured suite of complimentary tools for data integration and so forth."
"The setup is simple."
"I like that we can synch and run a large query. I also like that we can work with a large amount of data. You don't need to work separately, as it's a ready-made solution. It also comes with a built-in machine-learning feature. Once we start inputting the data, it will suggest some things related to the data, and we can come up with nice dashboards and statistics from a vast amount of data."
"Dremio allows querying the files I have on my block storage or object storage."
"It's almost similar, yet it's better than Starburst in spinning up or connecting to the new source since it's on SaaS."
"Dremio gives you the ability to create services which do not require additional resources and sterilization."
"Everyone uses Dremio in my company; some use it only for the analytics function."
"Overall, you can rate it as eight out of ten."
"Dremio enables you to manage changes more effectively than any other data warehouse platform. There are two things that come into play. One is data lineage. If you are looking at data in Dremio, you may want to know the source and what happened to it along the way or how it may have been transformed in the data pipeline to get to the point where you're consuming it."
"We primarily use Dremio to create a data framework and a data queue."
"Dremio is very easy to use for building queries."
 

Cons

"We would like to be able to calibrate the solution to run on top of a raw file."
"We'd like to have more integrations with other technologies."
"An area for improvement in BigQuery is its UI because it's not working very well. Pricing for the solution is also very high."
"For greater flexibility and ease of use, it would be beneficial if BigQuery offered more third-party add-ons and connectors, particularly for databases that don't have built-in integration options."
"I rate BigQuery six out of 10 for affordability. It could be cheaper."
"The product’s performance could be much faster."
"The price could be better. Compared to competing solutions, BigQuery is expensive. It's only suitable for enterprise customers, not small and medium-sized businesses, as they cannot afford this kind of solution. In the next release, it would be better if they improved their AI bot. Although machine learning and artificial intelligence are doing wonders, there is still a lot of room to enhance them."
"It would be beneficial if BigQuery could be made more affordable."
"They need to have multiple connectors. Starburst is rich in connectors, however, they are lacking Salesforce connectivity as of today."
"They need to have multiple connectors."
"We've faced a challenge with integrating Dremio and Databricks, specifically regarding authentication. It is not shaking hands very easily."
"Dremio doesn't support the Delta connector. Dremio writes the IT support for Delta, but the support isn't great. There is definitely room for improvement."
"Dremio takes a long time to execute large queries or the executing of correlated queries or nested queries. Additionally, the solution could improve if we could read data from the streaming pipelines or if it allowed us to create the ETL pipeline directly on top of it, similar to Snowflake."
"I cannot use the recursive common table expression (CTE) in Dremio because the support page says it's currently unsupported."
"There are performance issues at times due to our limited experience with Dremio, and the fact that we are running it on single nodes using a community version."
"It shows errors sometimes."
 

Pricing and Cost Advice

"The price is a bit high but the technology is worth it."
"The price could be better. Usually, you need to buy the license for a year. Whenever you want more, you can subscribe to it, and you can use it. Otherwise, you can terminate the license. You can use it daily or monthly, and we use it based on a project's requirements."
"The platform is inexpensive."
"The pricing appears to be competitive for the intended usage scenarios we have in mind."
"We are above the free threshold, so we are paying around 40 euros per month for BigQuery."
"BigQuery pricing can increase quickly. It's a high-priced solution."
"Its cost structure operates on a pay-as-you-go model."
"The solution is pretty affordable and quite cheap in comparison to PDP or Cloudera."
"Right now the cluster costs approximately $200,000 per month and is based on the volume of data we have."
"Dremio is less costly competitively to Snowflake or any other tool."
report
Use our free recommendation engine to learn which Cloud Data Warehouse solutions are best for your needs.
861,524 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
17%
Computer Software Company
16%
Manufacturing Company
12%
Retailer
8%
Financial Services Firm
31%
Computer Software Company
9%
Manufacturing Company
6%
Healthcare Company
4%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about BigQuery?
The initial setup process is easy.
What is your experience regarding pricing and costs for BigQuery?
I believe the cost of BigQuery is competitive versus the alternatives in the market, but it can become expensive if the tool is not used properly. It is on a per-consumption basis, the billing, so ...
What needs improvement with BigQuery?
I have not used BigQuery for AI and machine learning projects myself. I know how to use it, and I can see where it would be useful, but so far, in my projects, I have not included a BigQuery compon...
What do you like most about Dremio?
Dremio allows querying the files I have on my block storage or object storage.
What is your experience regarding pricing and costs for Dremio?
The licensing is very expensive. We need a license to scale as we are currently using the community version.
What needs improvement with Dremio?
They need to have multiple connectors. Starburst is rich in connectors, however, they are lacking Salesforce connectivity as of today. They don't have Salesforce connectivity. However, Starburst do...
 

Comparisons

 

Overview

 

Sample Customers

Information Not Available
UBS, TransUnion, Quantium, Daimler, OVH
Find out what your peers are saying about BigQuery vs. Dremio and other solutions. Updated: June 2025.
861,524 professionals have used our research since 2012.