Try our new research platform with insights from 80,000+ expert users

Dremio vs Starburst Enterprise comparison

Sponsored
 

Comparison Buyer's Guide

Executive Summary
 

Categories and Ranking

IBM SPSS Statistics
Sponsored
Ranking in Data Science Platforms
10th
Average Rating
8.0
Number of Reviews
37
Ranking in other categories
Data Mining (3rd)
Dremio
Ranking in Data Science Platforms
8th
Average Rating
8.6
Reviews Sentiment
5.9
Number of Reviews
6
Ranking in other categories
Cloud Data Warehouse (10th)
Starburst Enterprise
Ranking in Data Science Platforms
14th
Average Rating
8.6
Number of Reviews
2
Ranking in other categories
Streaming Analytics (12th)
 

Mindshare comparison

As of November 2024, in the Data Science Platforms category, the mindshare of IBM SPSS Statistics is 2.8%, up from 2.6% compared to the previous year. The mindshare of Dremio is 4.1%, up from 2.1% compared to the previous year. The mindshare of Starburst Enterprise is 2.1%, up from 1.6% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

AbakarAhmat - PeerSpot reviewer
Enhancing survey analysis that provides valued insightfulness
I used traditional tools where I would prepare data, click through menus, and use SQL Server for data visualization. We switched to IBM SPSS because it offers strong certification and aligns well with the standards we prioritize in our surveys. In terms of popularity, it stands out as the top choice in the market, especially in the research and university domains. Many different organizations and institutions use SPSS for statistical analytics. While there are other tools like MCLab and similar options available, SPSS is the most renowned and widely used among them.
MikeWalker - PeerSpot reviewer
It enables you to manage changes more effectively than any other platform.
Dremio enables you to manage changes more effectively than any other data warehouse platform. There are two things that come into play. One is data lineage. If you are looking at data in Dremio, you may want to know the source and what happened to it along the way or how it may have been transformed in the data pipeline to get to the point where you're consuming it. There's another thing called data providence. They're tied together. Data providence allows you to go back and recreate the data at any particular point in time. It's extremely important for compliance and governance issues because data changes all time. How did it change? What was it three days or months ago? You may have made some decisions based on data that was three months old, so you might need to revisit those. It's essential for things like machine learning and deep learning, where you are generating AI models off data. When the model stops working or doesn't work as expected, you need to figure out why. You have to go back and adjust the datasets used to train the model. We do that through an open-source project called Nessie, which is their basis for providing data lineage and data province capabilities. It's super powerful. Arrow is another open-source project for storing data in memory and performing data query operations. Data sits on a disk in one format. If you want to do anything with data, you have to load it into your computer and put it into memory so you can work with it. Arrow provides a format in memory that enables the whole library to perform various operations on that data. Every vendor has its own way of representing data in memory. They've latched onto an industry standard and developed it so it's open. Now people can use the exact same format in memory to do operations and use the library set to perform functions on data. New developers can decide if they want to develop their own memory format or use one that's already there. Data transfer is a massive problem when you're working with large datasets, doing advanced analytics, and trying to train machine learning or deep learning models. What happens often is companies downsample their data sets to do training on models because transferring and managing data on a deep learning or machine learning platform is too much.
KamleshPant - PeerSpot reviewer
Connects to any data source from any region and offers unified access
There are no specific projects supported by Starburst regarding AI initiatives or machine learning projects. In the future, if we have all the data available, we can definitely capitalize on AI/ML and LLM capabilities to summarize data and gain insights. That's our future goal, but we haven't reached that point yet. There should be support for REST API data sources to access data from the web. We often have data coming in and communicate with data sources via REST API calls. I don't see that capability in Starburst currently; everything is through JDBC or ODBC. If Starburst could seamlessly access data using REST API capabilities, it would be a game-changer. The self-service data management features, like self-service materialized views, are great, but they can be a bit complex for basic users to understand.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"One feature I found very valuable was the analysis of variance (ANOVA)."
"It is perfectly adequate if all you need are the results and not the trail of evidence."
"Custom tables and macros: They allow us to create useful reports quickly for a broad audience."
"Most of the product features are good but I particularly like the linear regression analysis."
"The most valuable feature is its robust statistical analysis capabilities."
"It is a modeling tool with helpful automation."
"Since we are using the software as a statistical tool, I would say the best aspects of it are the regression and segmentation capabilities. That said, I've used it for all sorts of things."
"SPSS is quite robust and quicker in terms of providing you the output."
"Dremio gives you the ability to create services which do not require additional resources and sterilization."
"Everyone uses Dremio in my company; some use it only for the analytics function."
"Dremio allows querying the files I have on my block storage or object storage."
"Dremio enables you to manage changes more effectively than any other data warehouse platform. There are two things that come into play. One is data lineage. If you are looking at data in Dremio, you may want to know the source and what happened to it along the way or how it may have been transformed in the data pipeline to get to the point where you're consuming it."
"We primarily use Dremio to create a data framework and a data queue."
"The most valuable feature of Dremio is it can sit on top of any other data storage, such as Amazon S3, Azure Data Factory, SGFS, or Hive. The memory competition is good. If you are running any kind of materialized view, you'd be running in memory."
"We have noticed improvements in performance using Starburst Enterprise. It handles complex data, including reading and partitioning files. We can add a new catalog to Starburst Enterprise by providing connection details and service account information. This allows us to integrate with existing tools, such as the Snowflake database, which we use for data protection in our project."
"It's very scalable, fast performing, and supports many catalogs."
 

Cons

"It could allow adding color to data models to make them easier to interpret."
"One of the areas that should be similar to Minitabs is the use of blogs. The Minitabs blog helps users understand the tools and gives lots of practical examples. Following the SPSS manual is cumbersome. It's a good, exhaustive manual, but it's not practical to use. With Minitabs, you can go to the blogs and find specific articles written about various components and it's very helpful. Without blogs, we find SPSS more complicated."
"In developing countries, it would be beneficial to provide certain features to users at no cost initially, while also customizing pricing options."
"I think the visualization and charting should be changed and made easier and more effective."
"Improvements are needed in the user interface, particularly in terms of user-friendliness."
"SPSS is a tool that's been around since the late 60s, and it's the universal worldwide standard for quantitative social science data analysis. That said, it does seem a bit strange to me that the graphical output functions are so clunky after all these years. The output of charts and graphs that SPSS produces is hideous."
"Perhaps in terms of visualization. It's not really easy to do some data visualization, just simple, descriptive analysis in SPSS. I think that could be an area for improvement."
"The design of the experience can be improved."
"It shows errors sometimes."
"I cannot use the recursive common table expression (CTE) in Dremio because the support page says it's currently unsupported."
"We've faced a challenge with integrating Dremio and Databricks, specifically regarding authentication. It is not shaking hands very easily."
"Dremio takes a long time to execute large queries or the executing of correlated queries or nested queries. Additionally, the solution could improve if we could read data from the streaming pipelines or if it allowed us to create the ETL pipeline directly on top of it, similar to Snowflake."
"They have an automated tool for building SQL queries, so you don't need to know SQL. That interface works, but it could be more efficient in terms of the SQL generated from those things. It's going through some growing pains. There is so much value in tools like these for people with no SQL experience. Over time, Dermio will make these capabilities more accessible to users who aren't database people."
"Dremio doesn't support the Delta connector. Dremio writes the IT support for Delta, but the support isn't great. There is definitely room for improvement."
"There should be support for REST API data sources to access data from the web."
"Starburst Enterprise could improve by offering additional features similar to those provided by other SQL query tools. For example, incorporating functionalities like pivot tables would make it more feasible to use."
 

Pricing and Cost Advice

"The pricing of the modeler is high and can reduce the utility of the product for those who can not afford to adopt it."
"The price of this solution is a little bit high, which was a problem for my company."
"SPSS is an expensive piece of software because it's incredibly complex and has been refined over decades, but I would say it's fairly priced."
"I rate the tool's pricing a five out of ten."
"The price of IBM SPSS Statistics could improve."
"More affordable training for new staff members."
"If it requires lot of data processing, maybe switching to IBM SPSS Clementine would be better for the buyer."
"It's quite expensive, but they do a special deal for universities."
"Dremio is less costly competitively to Snowflake or any other tool."
"Right now the cluster costs approximately $200,000 per month and is based on the volume of data we have."
"I haven't personally dealt with the pricing aspects first-hand, but from what I understand, it largely depends on the specifics of your setup, especially the machines you use on AWS. The cost of using Starburst Enterprise can vary based on the amount of data you're processing and the type of machines you opt for, whether on AWS or another cloud platform."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
816,636 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
17%
Computer Software Company
9%
University
9%
Manufacturing Company
8%
Financial Services Firm
32%
Computer Software Company
10%
Manufacturing Company
8%
Retailer
4%
Financial Services Firm
44%
Computer Software Company
10%
Government
4%
Energy/Utilities Company
4%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
No data available
 

Questions from the Community

What do you like most about IBM SPSS Statistics?
The software offers consistency across multiple research projects helping us with predictive analytics capabilities.
What is your experience regarding pricing and costs for IBM SPSS Statistics?
The cost of IBM SPSS Statistics is managed by organizations, not individual researchers. It is a very expensive produ...
What needs improvement with IBM SPSS Statistics?
IBM SPSS Statistics does not keep you close to your data like KNIME. In KNIME, at every stage, you can see the result...
What do you like most about Dremio?
Dremio allows querying the files I have on my block storage or object storage.
What is your experience regarding pricing and costs for Dremio?
Every tool has a value based on its visualization, and the pricing is worth its value.
What needs improvement with Dremio?
Dremio's interface is good, but it has a few limitations. I cannot do a lot of things with ANSI SQL or basic SQL. I c...
What is your experience regarding pricing and costs for Starburst Enterprise?
I haven't personally dealt with the pricing aspects first-hand, but from what I understand, it largely depends on the...
What needs improvement with Starburst Enterprise?
There are no specific projects supported by Starburst regarding AI initiatives or machine learning projects. In the f...
What is your primary use case for Starburst Enterprise?
We use Starburst with one client who is exploring their ecosystem to remove data silos and enable data access across ...
 

Also Known As

SPSS Statistics
No data available
No data available
 

Learn More

Video not available
Video not available
 

Overview

 

Sample Customers

LDB Group, RightShip, Tennessee Highway Patrol, Capgemini Consulting, TEAC Corporation, Ironside, nViso SA, Razorsight, Si.mobil, University Hospitals of Leicester, CROOZ Inc., GFS Fundraising Solutions, Nedbank Ltd., IDS-TILDA
UBS, TransUnion, Quantium, Daimler, OVH
Information Not Available
Find out what your peers are saying about Dremio vs. Starburst Enterprise and other solutions. Updated: October 2024.
816,636 professionals have used our research since 2012.