Try our new research platform with insights from 80,000+ expert users

Azure Data Factory vs erwin Data Catalog by Quest comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure Data Factory
Average Rating
8.0
Reviews Sentiment
6.9
Number of Reviews
90
Ranking in other categories
Data Integration (1st), Cloud Data Warehouse (3rd)
erwin Data Catalog by Quest
Average Rating
7.6
Reviews Sentiment
5.1
Number of Reviews
2
Ranking in other categories
Metadata Management (10th)
 

Mindshare comparison

Azure Data Factory and erwin Data Catalog by Quest aren’t in the same category and serve different purposes. Azure Data Factory is designed for Data Integration and holds a mindshare of 10.0%, down 12.9% compared to last year.
erwin Data Catalog by Quest, on the other hand, focuses on Metadata Management, holds 3.1% mindshare, up 2.3% since last year.
Data Integration
Metadata Management
 

Featured Reviews

Joy Maitra - PeerSpot reviewer
Facilitates seamless data pipeline creation with good analytics and and thorough monitoring
Azure Data Factory is a low code, no code platform, which is helpful. It provides many prebuilt functionalities that assist in building data pipelines. Also, it facilitates easy transformation with all required functionalities for analytics. Furthermore, it connects to different sources out-of-the-box, making integration much easier. The monitoring is very thorough, though a more readable version would be appreciable.
Andres-Martinez - PeerSpot reviewer
Helps with metadata management, saves time, and allows us to do impact analysis on any changes
There are always ways to improve things. For example, we can use AI to be able to find out something. When we are typing something, if we don't know the exact term, Artificial Intelligence would be useful to find terms that are phonetically or syntactically similar. Instead of having to type in the exact name, they can provide those in the list. So, they can provide AI support for the search because when you have thousands and thousands of terms, it is hard to remember all the names. There were some issues when drawing the data models. If you have more than 500 or 600 tables, it takes a long time to display those in the right position on the screen. That can also be improved. They need some caching and some parallel pipelines working on the backend in order to divide it into sections.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It's extremely consistent."
"Azure Data Factory is a low code, no code platform, which is helpful."
"The data is more scalable."
"Azure Data Factory's most valuable features are the packages and the data transformation that it allows us to do, which is more drag and drop, or a visual interface. So, that eases the entire process."
"The solution includes a feature that increases the number of processors used which makes it very powerful and adds to the scalability."
"An excellent tool for pipeline orchestration."
"The solution has a good interface and the integration with GitHub is very useful."
"ADF is another ETL tool similar to Informatica that can transform data or copy it from on-prem to the cloud or vice versa. Once we have the data, we can apply various transformations to it and schedule our pipeline according to our business needs. ADF integrates with Databricks. We can call our Databricks notebooks and schedule them via ADF."
"When you combine it with data lineage, every time you need to make a change, it allows you to do impact analysis on any changes and then connect to the end-users or data stewards so that they can be aware that a change is coming. That's one of the main benefits we use it for."
"The data catalog feature is pretty good."
 

Cons

"The Microsoft documentation is too complicated."
"My only problem is the seamless connectivity with various other databases, for example, SAP."
"It would be better if it had machine learning capabilities."
"There is no built-in pipeline exit activity when encountering an error."
"The speed and performance need to be improved."
"There's no Oracle connector if you want to do transformation using data flow activity, so Azure Data Factory needs more connectors for data flow transformation."
"There are performance issues, particularly with the underlying compute, which should be configurable."
"Data Factory's cost is too high."
"There is room for improvement with respect to the connector and how to connect to the structured and unstructured database."
"There are always ways to improve things. For example, we can use AI to be able to find out something. When we are typing something, if we don't know the exact term, Artificial Intelligence would be useful to find terms that are phonetically or syntactically similar. Instead of having to type in the exact name, they can provide those in the list. So, they can provide AI support for the search because when you have thousands and thousands of terms, it is hard to remember all the names."
 

Pricing and Cost Advice

"I rate the product price as six on a scale of one to ten, where one is low price and ten is high price."
"My company is on a monthly subscription for Azure Data Factory, but it's more of a pay-as-you-go model where your monthly invoice depends on how many resources you use. On a scale of one to five, pricing for Azure Data Factory is a four. It's just the usage fees my company pays monthly."
"ADF is cheaper compared to AWS."
"I would not say that this product is overly expensive."
"Azure Data Factory gives better value for the price than other solutions such as Informatica."
"The solution is cheap."
"The price is fair."
"Our licensing fees are approximately 15,000 ($150 USD) per month."
"I am not very familiar with its pricing. I know it is not cheap, but it is also not super expensive. It depends on the company size. For a company making $1 million, it is very expensive. For a company making 10 million and above, it might be okay."
"Erwin Data Catalog is very expensive."
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
842,388 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
13%
Computer Software Company
12%
Manufacturing Company
9%
Healthcare Company
7%
Financial Services Firm
21%
Government
12%
Computer Software Company
10%
Manufacturing Company
10%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

How do you select the right cloud ETL tool?
AWS Glue and Azure Data factory for ELT best performance cloud services.
How does Azure Data Factory compare with Informatica PowerCenter?
Azure Data Factory is flexible, modular, and works well. In terms of cost, it is not too pricey. It offers the stability and reliability I am looking for, good scalability, and is easy to set up an...
How does Azure Data Factory compare with Informatica Cloud Data Integration?
Azure Data Factory is a solid product offering many transformation functions; It has pre-load and post-load transformations, allowing users to apply transformations either in code by using Power Q...
Which ETL tool would you recommend to populate data from OLTP to OLAP?
There are two products I know about * TimeXtender : Microsoft based, Transformation logic is quiet good and can easily be extended with T-SQL , Has a semantic layer that generates metat data for cu...
 

Overview

 

Sample Customers

1. Adobe 2. BMW 3. Coca-Cola 4. General Electric 5. Johnson & Johnson 6. LinkedIn 7. Mastercard 8. Nestle 9. Pfizer 10. Samsung 11. Siemens 12. Toyota 13. Unilever 14. Verizon 15. Walmart 16. Accenture 17. American Express 18. AT&T 19. Bank of America 20. Cisco 21. Deloitte 22. ExxonMobil 23. Ford 24. General Motors 25. IBM 26. JPMorgan Chase 27. Microsoft (Azure Data Factory is developed by Microsoft) 28. Oracle 29. Procter & Gamble 30. Salesforce 31. Shell 32. Visa
Balfour Beatty Construction, Banco de México, BFSI Canada, CenturyLink, Daktronics
Find out what your peers are saying about Microsoft, Informatica, Talend and others in Data Integration. Updated: February 2025.
842,388 professionals have used our research since 2012.