Try our new research platform with insights from 80,000+ expert users

Azure Data Factory vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 19, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure Data Factory
Ranking in Data Integration
1st
Average Rating
8.0
Reviews Sentiment
6.9
Number of Reviews
90
Ranking in other categories
Cloud Data Warehouse (3rd)
Spring Cloud Data Flow
Ranking in Data Integration
22nd
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Streaming Analytics (9th)
 

Mindshare comparison

As of February 2025, in the Data Integration category, the mindshare of Azure Data Factory is 10.1%, down from 12.9% compared to the previous year. The mindshare of Spring Cloud Data Flow is 1.1%, up from 0.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Integration
 

Featured Reviews

Joy Maitra - PeerSpot reviewer
Facilitates seamless data pipeline creation with good analytics and and thorough monitoring
Azure Data Factory is a low code, no code platform, which is helpful. It provides many prebuilt functionalities that assist in building data pipelines. Also, it facilitates easy transformation with all required functionalities for analytics. Furthermore, it connects to different sources out-of-the-box, making integration much easier. The monitoring is very thorough, though a more readable version would be appreciable.
NitinGoyal - PeerSpot reviewer
Has a plug-and-play model and provides good robustness and scalability
The solution's community support could be improved. I don't know why the Spring Cloud Data Flow community is not very strong. Community support is very limited whenever you face any problem or are stuck somewhere. I'm not sure whether it has improved in the last six months because this pipeline was set up almost two years ago. I struggled with that a lot. For example, there was limited support whenever I got an exception and sought help from Stack Overflow or different forums. Interacting with Kubernetes needs a few certificates. You need to define all the certificates within your application. With the help of those certificates, your Java application or Spring Cloud Data Flow can interact with Kubernetes. I faced a lot of hurdles while placing those certificates. Despite following the official documentation to define all the replicas, readiness, and liveliness probes within the Spring Cloud Data Flow application, it was not working. So, I had to troubleshoot while digging in and debugging the internals of Spring Cloud Data Flow at that time. It was just a configuration mismatch, and I was doing nothing weird. There was a small spelling difference between how Spring Cloud Data Flow was expecting it and how I passed it. I was just following the official documentation.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Data Flow and Databricks are going to be extremely valuable services, allowing data solutions to scale as the business grows and new data sources are added."
"The two most valuable features of Azure Data Factory are that it's very scalable and that it's also highly reliable."
"In terms of my personal experience, it works fine."
"The data is more scalable."
"It is beneficial that the solution is written with Spark as the back end."
"I think it makes it very easy to understand what data flow is and so on. You can leverage the user interface to do the different data flows, and it's great. I like it a lot."
"Allows more data between on-premises and cloud solutions"
"From my experience so far, the best feature is the ability to copy data to any environment. We have 100 connects and we can connect them to the system and copy the data from its respective system to any environment. That is the best feature."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"The dashboards in Spring Cloud Dataflow are quite valuable."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The product is very user-friendly."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
"The most valuable feature is real-time streaming."
 

Cons

"The speed and performance need to be improved."
"Sometimes I need to do some coding, and I'd like to avoid that. I'd like no-code integrations."
"DataStage is easier to learn than Data Factory because it's more visual. Data Factory has some drag-and-drop options, but it's not as intuitive as DataStage. It would be better if they added more drag-and-drop features. You can start using DataStage without knowing the code. You don't need to learn how the code works before using the solution."
"The pricing model should be more transparent and available online."
"There is no built-in pipeline exit activity when encountering an error."
"The performance could be better. It would be better if Azure Data Factory could handle a higher load. I have heard that it can get overloaded, and it can't handle it."
"The one element of the solution that we have used and could be improved is the user interface."
"There is always room to improve. There should be good examples of use that, of course, customers aren't always willing to share. It is Catch-22. It would help the user base if everybody had really good examples of deployments that worked, but when you ask people to put out their good deployments, which also includes me, you usually got, "No, I'm not going to do that." They don't have enough good examples. Microsoft probably just needs to pay one of their partners to build 20 or 30 examples of functional Data Factories and then share them as a user base."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"The solution's community support could be improved."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"I would improve the dashboard features as they are not very user-friendly."
 

Pricing and Cost Advice

"The pricing is pay-as-you-go or reserve instance. Of the two options, reserve instance is much cheaper."
"I would rate Data Factory's pricing nine out of ten."
"It's not particularly expensive."
"The licensing cost is included in the Synapse."
"Product is priced at the market standard."
"Data Factory is affordable."
"I would not say that this product is overly expensive."
"The licensing model for Azure Data Factory is good because you won't have to overpay. Pricing-wise, the solution is a five out of ten. It was not expensive, and it was not cheap."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
"The solution provides value for money, and we are currently using its community edition."
"This is an open-source product that can be used free of charge."
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
838,713 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
13%
Computer Software Company
12%
Manufacturing Company
9%
Healthcare Company
7%
Financial Services Firm
25%
Computer Software Company
18%
Manufacturing Company
7%
Retailer
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

How do you select the right cloud ETL tool?
AWS Glue and Azure Data factory for ELT best performance cloud services.
How does Azure Data Factory compare with Informatica PowerCenter?
Azure Data Factory is flexible, modular, and works well. In terms of cost, it is not too pricey. It offers the stability and reliability I am looking for, good scalability, and is easy to set up an...
How does Azure Data Factory compare with Informatica Cloud Data Integration?
Azure Data Factory is a solid product offering many transformation functions; It has pre-load and post-load transformations, allowing users to apply transformations either in code by using Power Q...
What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
 

Overview

 

Sample Customers

1. Adobe 2. BMW 3. Coca-Cola 4. General Electric 5. Johnson & Johnson 6. LinkedIn 7. Mastercard 8. Nestle 9. Pfizer 10. Samsung 11. Siemens 12. Toyota 13. Unilever 14. Verizon 15. Walmart 16. Accenture 17. American Express 18. AT&T 19. Bank of America 20. Cisco 21. Deloitte 22. ExxonMobil 23. Ford 24. General Motors 25. IBM 26. JPMorgan Chase 27. Microsoft (Azure Data Factory is developed by Microsoft) 28. Oracle 29. Procter & Gamble 30. Salesforce 31. Shell 32. Visa
Information Not Available
Find out what your peers are saying about Azure Data Factory vs. Spring Cloud Data Flow and other solutions. Updated: January 2025.
838,713 professionals have used our research since 2012.