Try our new research platform with insights from 80,000+ expert users

Azure Data Factory vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive Summary
 

Categories and Ranking

Azure Data Factory
Ranking in Data Integration
1st
Average Rating
8.0
Reviews Sentiment
6.7
Number of Reviews
86
Ranking in other categories
Cloud Data Warehouse (3rd)
Spring Cloud Data Flow
Ranking in Data Integration
22nd
Average Rating
7.8
Reviews Sentiment
6.7
Number of Reviews
9
Ranking in other categories
Streaming Analytics (10th)
 

Mindshare comparison

As of November 2024, in the Data Integration category, the mindshare of Azure Data Factory is 11.1%, down from 13.3% compared to the previous year. The mindshare of Spring Cloud Data Flow is 1.1%, up from 1.0% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Integration
 

Featured Reviews

Thulani David Mngadi - PeerSpot reviewer
Data flow feature is valuable for data transformation tasks
The workflow automation features in GitLab, particularly its low code/no code approach, are highly beneficial for accelerating development speed. This feature allows for quick creation of pipelines and offers customization options for integration needs, making it versatile for various use cases. GitLab supports a wide range of connectors, catering to a majority of integration needs. Azure Data Factory's virtual enterprise and monitoring capabilities, the visual interface of GitLab makes it user-friendly and easy to teach, facilitating adoption within teams. While the monitoring capabilities are sufficient out of the box, they may not be as comprehensive as dedicated enterprise monitoring tools. GitLab's monitoring features are manageable for production use, with the option to integrate log analytics or create custom dashboards if needed. The data flow feature in Azure Data Factory within GitLab is valuable for data transformation tasks, especially for those who may not have expertise in writing complex code. It simplifies the process of data manipulation and is particularly useful for individuals unfamiliar with Spark coding. While there could be improvements for more flexibility, overall, the data flow feature effectively accomplishes its purpose within GitLab's ecosystem.
NitinGoyal - PeerSpot reviewer
Has a plug-and-play model and provides good robustness and scalability
The solution's community support could be improved. I don't know why the Spring Cloud Data Flow community is not very strong. Community support is very limited whenever you face any problem or are stuck somewhere. I'm not sure whether it has improved in the last six months because this pipeline was set up almost two years ago. I struggled with that a lot. For example, there was limited support whenever I got an exception and sought help from Stack Overflow or different forums. Interacting with Kubernetes needs a few certificates. You need to define all the certificates within your application. With the help of those certificates, your Java application or Spring Cloud Data Flow can interact with Kubernetes. I faced a lot of hurdles while placing those certificates. Despite following the official documentation to define all the replicas, readiness, and liveliness probes within the Spring Cloud Data Flow application, it was not working. So, I had to troubleshoot while digging in and debugging the internals of Spring Cloud Data Flow at that time. It was just a configuration mismatch, and I was doing nothing weird. There was a small spelling difference between how Spring Cloud Data Flow was expecting it and how I passed it. I was just following the official documentation.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution handles large volumes of data very well. One of its best features is its ability to integrate data end-to-end, from pulling data from the source to accessing Databricks. This makes it quite useful for our needs."
"The data flows were beneficial, allowing us to perform multiple transformations."
"The data factory agent is quite good and programming or defining the value of jobs, processes, and activities is easy."
"Data Factory allows you to pull data from multiple systems, transform it according to your business needs, and load it into a data warehouse or data lake."
"Azure Data Factory's most valuable features are the packages and the data transformation that it allows us to do, which is more drag and drop, or a visual interface. So, that eases the entire process."
"ADF is another ETL tool similar to Informatica that can transform data or copy it from on-prem to the cloud or vice versa. Once we have the data, we can apply various transformations to it and schedule our pipeline according to our business needs. ADF integrates with Databricks. We can call our Databricks notebooks and schedule them via ADF."
"On the tool itself, we've never experienced any bugs or glitches. There haven't been crashes. Stability has been good."
"The most valuable feature of Azure Data Factory is that it has a good combination of flexibility, fine-tuning, automation, and good monitoring."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
"The most valuable feature is real-time streaming."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"The product is very user-friendly."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The dashboards in Spring Cloud Dataflow are quite valuable."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
 

Cons

"We have experienced some issues with the integration. This is an area that needs improvement."
"Customer service is not satisfactory. Third-party personnel handle support and rely on a knowledge repository."
"Data Factory's monitorability could be better."
"The solution needs to be more connectable to its own services."
"The Microsoft documentation is too complicated."
"There is room for improvement primarily in its streaming capabilities. For structured streaming and machine learning model implementation within an ETL process, it lags behind tools like Informatica."
"The user interface could use improvement. It's not a major issue but it's something that can be improved."
"We require Azure Data Factory to be able to connect to Google Analytics."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"The solution's community support could be improved."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"I would improve the dashboard features as they are not very user-friendly."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
 

Pricing and Cost Advice

"It seems very low initially, but as the data grows, the solution’s bills grow exponentially."
"Pricing appears to be reasonable in my opinion."
"The price you pay is determined by how much you use it."
"The solution is cheap."
"It's not particularly expensive."
"I don't see a cost; it appears to be included in general support."
"The solution's fees are based on a pay-per-minute use plus the amount of data required to process."
"The licensing is a pay-as-you-go model, where you pay for what you consume."
"This is an open-source product that can be used free of charge."
"The solution provides value for money, and we are currently using its community edition."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
816,406 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
13%
Computer Software Company
12%
Manufacturing Company
9%
Healthcare Company
7%
Financial Services Firm
29%
Computer Software Company
17%
Manufacturing Company
7%
Retailer
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

How do you select the right cloud ETL tool?
AWS Glue and Azure Data factory for ELT best performance cloud services.
How does Azure Data Factory compare with Informatica PowerCenter?
Azure Data Factory is flexible, modular, and works well. In terms of cost, it is not too pricey. It offers the stability and reliability I am looking for, good scalability, and is easy to set up an...
How does Azure Data Factory compare with Informatica Cloud Data Integration?
Azure Data Factory is a solid product offering many transformation functions; It has pre-load and post-load transformations, allowing users to apply transformations either in code by using Power Q...
What needs improvement with Spring Cloud Data Flow?
I would improve the dashboard features as they are not very user-friendly. Another area for improvement is the documentation, as it is not very precise. There are limited resources available on Spr...
What is your primary use case for Spring Cloud Data Flow?
I am a developer using Spring Cloud Dataflow. We primarily use it to convert our applications from monolithic to microservices. The solution is used for scheduling tasks in a specific order and ens...
What advice do you have for others considering Spring Cloud Data Flow?
My advice would be to thoroughly review the documentation and understand if Spring Cloud Dataflow is the right solution for your application. For applications with only one or two microservices, it...
 

Learn More

 

Overview

 

Sample Customers

1. Adobe 2. BMW 3. Coca-Cola 4. General Electric 5. Johnson & Johnson 6. LinkedIn 7. Mastercard 8. Nestle 9. Pfizer 10. Samsung 11. Siemens 12. Toyota 13. Unilever 14. Verizon 15. Walmart 16. Accenture 17. American Express 18. AT&T 19. Bank of America 20. Cisco 21. Deloitte 22. ExxonMobil 23. Ford 24. General Motors 25. IBM 26. JPMorgan Chase 27. Microsoft (Azure Data Factory is developed by Microsoft) 28. Oracle 29. Procter & Gamble 30. Salesforce 31. Shell 32. Visa
Information Not Available
Find out what your peers are saying about Azure Data Factory vs. Spring Cloud Data Flow and other solutions. Updated: October 2024.
816,406 professionals have used our research since 2012.