Try our new research platform with insights from 80,000+ expert users

Azure Data Factory vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 19, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure Data Factory
Ranking in Data Integration
1st
Average Rating
8.0
Reviews Sentiment
6.9
Number of Reviews
92
Ranking in other categories
Cloud Data Warehouse (2nd)
Spring Cloud Data Flow
Ranking in Data Integration
21st
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Streaming Analytics (9th)
 

Mindshare comparison

As of September 2025, in the Data Integration category, the mindshare of Azure Data Factory is 5.6%, down from 11.6% compared to the previous year. The mindshare of Spring Cloud Data Flow is 1.2%, up from 0.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Integration Market Share Distribution
ProductMarket Share (%)
Azure Data Factory5.6%
Spring Cloud Data Flow1.2%
Other93.2%
Data Integration
 

Featured Reviews

KandaswamyMuthukrishnan - PeerSpot reviewer
Integrates diverse data sources and streamlines ETL processes effectively
Regarding potential areas of improvement for Azure Data Factory, there is a need for better data transformation, especially since many people are now depending on DataBricks more for connectivity and data integration. Azure Data Factory should consider how to enhance integration or filtering for more transformations, such as integrating with Spark clusters. I am satisfied with Azure Data Factory so far, but I suggest integrating some AI functionality to analyze data during the transition itself, providing insights such as null records, common records, and duplicates without running a separate pipeline or job. The monitoring tools in Azure Data Factory are helpful for optimizing data pipelines; while the current feature is adequate, they can improve by creating a live dashboard to see the online process, including how much percentage has been completed, which will be very helpful for people who are monitoring the pipeline.
Alokik Gupta - PeerSpot reviewer
Effective microservice and task management but needs more dashboard features
The dashboards in Spring Cloud Dataflow are quite valuable. By injecting the dependency of Spring Cloud Dataflow into our Spring Boot application and annotating it with 'enable task annotation', we can manage tasks effectively. Additionally, the platform allows us to create pipelines and use microservices like a logical AND gate, giving us greater control over our microservices.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It makes it easy to collect data from different sources."
"It is a complete ETL Solution."
"Data Factory's best features are simplicity and flexibility."
"ADF is another ETL tool similar to Informatica that can transform data or copy it from on-prem to the cloud or vice versa. Once we have the data, we can apply various transformations to it and schedule our pipeline according to our business needs. ADF integrates with Databricks. We can call our Databricks notebooks and schedule them via ADF."
"The security of the agent that is installed on-premises is very good."
"Azure Data Factory's most valuable features are the packages and the data transformation that it allows us to do, which is more drag and drop, or a visual interface. So, that eases the entire process."
"We haven't had any issues connecting it to other products."
"Our stakeholders and clients have expressed satisfaction with Azure Data Factory's efficiency and cost-effectiveness."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"The dashboards in Spring Cloud Dataflow are quite valuable."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
"The most valuable feature is real-time streaming."
"The product is very user-friendly."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
 

Cons

"Azure Data Factory could benefit from improvements in its monitoring capabilities to provide a more robust feature set. Enhancing the ease of deployment to higher environments within Azure DevOps would be beneficial, as the current process often requires extensive scripting and pipeline development. It is also known for the flexibility of the data flow feature, particularly in supporting more dynamic data-driven architectures. These enhancements would contribute to a more seamless and efficient workflow within GitLab."
"The product could provide more ways to import and export data."
"The pricing model should be more transparent and available online."
"It's a good idea to take a Microsoft course. Because they are really helpful when you start from your journey with Data Factory."
"DataStage is easier to learn than Data Factory because it's more visual. Data Factory has some drag-and-drop options, but it's not as intuitive as DataStage. It would be better if they added more drag-and-drop features. You can start using DataStage without knowing the code. You don't need to learn how the code works before using the solution."
"Occasionally, there are problems within Microsoft itself that impacts the Data Factory and causes it to fail."
"The Microsoft documentation is too complicated."
"Data Factory's cost is too high."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
"The solution's community support could be improved."
"I would improve the dashboard features as they are not very user-friendly."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
 

Pricing and Cost Advice

"While I can't specify the actual cost, I believe it is reasonably priced and comparable to similar products."
"In terms of licensing costs, we pay somewhere around S14,000 USD per month. There are some additional costs. For example, we would have to subscribe to some additional computing and for elasticity, but they are minimal."
"The solution's pricing is competitive."
"I rate the product price as six on a scale of one to ten, where one is low price and ten is high price."
"The price is fair."
"Pricing is comparable, it's somewhere in the middle."
"The solution's fees are based on a pay-per-minute use plus the amount of data required to process."
"It seems very low initially, but as the data grows, the solution’s bills grow exponentially."
"This is an open-source product that can be used free of charge."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
"The solution provides value for money, and we are currently using its community edition."
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
867,497 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
13%
Computer Software Company
12%
Manufacturing Company
9%
Government
7%
Financial Services Firm
24%
Computer Software Company
17%
Retailer
7%
Insurance Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business31
Midsize Enterprise19
Large Enterprise55
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise1
Large Enterprise5
 

Questions from the Community

How do you select the right cloud ETL tool?
AWS Glue and Azure Data factory for ELT best performance cloud services.
How does Azure Data Factory compare with Informatica PowerCenter?
Azure Data Factory is flexible, modular, and works well. In terms of cost, it is not too pricey. It offers the stability and reliability I am looking for, good scalability, and is easy to set up an...
How does Azure Data Factory compare with Informatica Cloud Data Integration?
Azure Data Factory is a solid product offering many transformation functions; It has pre-load and post-load transformations, allowing users to apply transformations either in code by using Power Q...
What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
 

Overview

 

Sample Customers

1. Adobe 2. BMW 3. Coca-Cola 4. General Electric 5. Johnson & Johnson 6. LinkedIn 7. Mastercard 8. Nestle 9. Pfizer 10. Samsung 11. Siemens 12. Toyota 13. Unilever 14. Verizon 15. Walmart 16. Accenture 17. American Express 18. AT&T 19. Bank of America 20. Cisco 21. Deloitte 22. ExxonMobil 23. Ford 24. General Motors 25. IBM 26. JPMorgan Chase 27. Microsoft (Azure Data Factory is developed by Microsoft) 28. Oracle 29. Procter & Gamble 30. Salesforce 31. Shell 32. Visa
Information Not Available
Find out what your peers are saying about Azure Data Factory vs. Spring Cloud Data Flow and other solutions. Updated: September 2025.
867,497 professionals have used our research since 2012.