Try our new research platform with insights from 80,000+ expert users

CloverETL vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 19, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

CloverETL
Ranking in Data Integration
65th
Average Rating
7.0
Reviews Sentiment
6.8
Number of Reviews
2
Ranking in other categories
Data Visualization (47th)
Spring Cloud Data Flow
Ranking in Data Integration
24th
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Streaming Analytics (9th)
 

Mindshare comparison

As of April 2025, in the Data Integration category, the mindshare of CloverETL is 0.2%, up from 0.1% compared to the previous year. The mindshare of Spring Cloud Data Flow is 1.1%, up from 0.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Integration
 

Featured Reviews

it_user854766 - PeerSpot reviewer
Provides wealth of pre-defined, customizable components, and descriptive logging for errors
* Familiar, intuitive GUI (Eclipse plug-in) coming from a Java development background. * In-depth, descriptive, and well-laid-out documentation. * Responsive support through forums, even directly from Clover staff. * Wealth of pre-defined components. * All components are customizable. * Descriptive logging, especially for error messages. * Ease of install/light footprint.
NitinGoyal - PeerSpot reviewer
Has a plug-and-play model and provides good robustness and scalability
The solution's community support could be improved. I don't know why the Spring Cloud Data Flow community is not very strong. Community support is very limited whenever you face any problem or are stuck somewhere. I'm not sure whether it has improved in the last six months because this pipeline was set up almost two years ago. I struggled with that a lot. For example, there was limited support whenever I got an exception and sought help from Stack Overflow or different forums. Interacting with Kubernetes needs a few certificates. You need to define all the certificates within your application. With the help of those certificates, your Java application or Spring Cloud Data Flow can interact with Kubernetes. I faced a lot of hurdles while placing those certificates. Despite following the official documentation to define all the replicas, readiness, and liveliness probes within the Spring Cloud Data Flow application, it was not working. So, I had to troubleshoot while digging in and debugging the internals of Spring Cloud Data Flow at that time. It was just a configuration mismatch, and I was doing nothing weird. There was a small spelling difference between how Spring Cloud Data Flow was expecting it and how I passed it. I was just following the official documentation.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Server features for scheduler: It is very easy to schedule jobs and monitor them. The interface is easy to use."
"Key features include wealth of pre-defined components; all components are customizable; descriptive logging, especially for error messages."
"No dependence on native language and ease of use.​​"
"Connectivity to various data sources: The ability to extract data from different data sources gives greater flexibility."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"The dashboards in Spring Cloud Dataflow are quite valuable."
"The product is very user-friendly."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
"The most valuable feature is real-time streaming."
 

Cons

"Its documentation could be improved.​"
"​Resource management: We typically run out of heap space, and even the allocation of high heap space does not seem to be enough.​"
"Needs: easier automated failure recovery; more, and more intuitive auto-generated/filled-in code for components; easier/more automated sync between CloverETL Designer and CloverETL Server."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
"I would improve the dashboard features as they are not very user-friendly."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"The solution's community support could be improved."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
 

Pricing and Cost Advice

Information not available
"The solution provides value for money, and we are currently using its community edition."
"This is an open-source product that can be used free of charge."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
847,772 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
No data available
Financial Services Firm
26%
Computer Software Company
17%
Retailer
7%
Manufacturing Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

Ask a question
Earn 20 points
What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
 

Overview

 

Sample Customers

IBM, Oracle, MuleSoft, GoodData, Thomson Reuters, salesforce.com, Comcast, Active Network, SHOP.CA
Information Not Available
Find out what your peers are saying about CloverETL vs. Spring Cloud Data Flow and other solutions. Updated: April 2025.
847,772 professionals have used our research since 2012.