Try our new research platform with insights from 80,000+ expert users

Pentaho Data Integration and Analytics vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 19, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Pentaho Data Integration an...
Ranking in Data Integration
23rd
Average Rating
8.0
Reviews Sentiment
6.9
Number of Reviews
53
Ranking in other categories
No ranking in other categories
Spring Cloud Data Flow
Ranking in Data Integration
22nd
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Streaming Analytics (9th)
 

Mindshare comparison

As of February 2025, in the Data Integration category, the mindshare of Pentaho Data Integration and Analytics is 1.4%, up from 0.5% compared to the previous year. The mindshare of Spring Cloud Data Flow is 1.1%, up from 0.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Integration
 

Featured Reviews

Ryan Ferdon - PeerSpot reviewer
Low-code makes development faster than with Python, but there were caching issues
If you're working with a larger data set, I'm not so sure it would be the best solution. The larger things got the slower it was. It was kind of buggy sometimes. And when we ran the flow, it didn't go from a perceived start to end, node by node. Everything kicked off at once. That meant there were times when it would get ahead of itself and a job would fail. That was not because the job was wrong, but because Pentaho decided to go at everything at once, and something would process before it was supposed to. There were nodes you could add to make sure that, before this node kicks off, all these others have processed, but it was a bit tedious. There were also caching issues, and we had to write code to clear the cache every time we opened the program, because the cache would fill up and it wouldn't run. I don't know how hard that would be for them to fix, or if it was fixed in version 10. Also, the UI is a bit outdated, but I'm more of a fan of function over how something looks. One other thing that would have helped with Pentaho was documentation and support on the internet: how to do things, how to set up. I think there are some sites on how to install it, and Pentaho does have a help repository, but it wasn't always the most useful.
NitinGoyal - PeerSpot reviewer
Has a plug-and-play model and provides good robustness and scalability
The solution's community support could be improved. I don't know why the Spring Cloud Data Flow community is not very strong. Community support is very limited whenever you face any problem or are stuck somewhere. I'm not sure whether it has improved in the last six months because this pipeline was set up almost two years ago. I struggled with that a lot. For example, there was limited support whenever I got an exception and sought help from Stack Overflow or different forums. Interacting with Kubernetes needs a few certificates. You need to define all the certificates within your application. With the help of those certificates, your Java application or Spring Cloud Data Flow can interact with Kubernetes. I faced a lot of hurdles while placing those certificates. Despite following the official documentation to define all the replicas, readiness, and liveliness probes within the Spring Cloud Data Flow application, it was not working. So, I had to troubleshoot while digging in and debugging the internals of Spring Cloud Data Flow at that time. It was just a configuration mismatch, and I was doing nothing weird. There was a small spelling difference between how Spring Cloud Data Flow was expecting it and how I passed it. I was just following the official documentation.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"We're using the PDI and the repository function, and they give us the ability to easily generate reporting and output, and to access data. We also like the ability to schedule."
"I can create faster instructions than writing with SQL or code. Also, I am able to do some background control of the data process with this tool. Therefore, I use it as an ELT tool. I have a station area where I can work with all the information that I have in my production databases, then I can work with the data that I created."
"I absolutely love Hitachi. I'm one of the forefront supporters of Hitachi for my firm. It's so easy to integrate within our environments. In terms of being able to quickly build ETL jobs, transform, and then automate them, it's really easy to integrate throughout for data analytics."
"I can use Python, which is open-source, and I can run other scripts, including Linux scripts. It's user-friendly for running any object-based language. That's a very important feature because we live in a world of open-source."
"Its drag-and-drop interface lets me and my team implement all the solutions that we need in our company very quickly. It's a very good tool for that."
"It's very simple compared to other products out there."
"We also haven't had to create any custom Java code. Almost everywhere it's SQL, so it's done in the pipeline and the configuration. That means you can offload the work to people who, while they are not less experienced, are less technical when it comes to logic."
"Pentaho Data Integration is easy to use, especially when transforming data."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"The dashboards in Spring Cloud Dataflow are quite valuable."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The most valuable feature is real-time streaming."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
"The product is very user-friendly."
 

Cons

"I would like to see support for some additional cloud sources. It doesn't support Azure, for example. I was trying to do a PoC with Azure the other day but it seems they don't support it."
"I would like to see improvement when it comes to integrating structured data with text data or anything that is unstructured. Sometimes we get all kinds of different files that we need to integrate into the warehouse."
"Should provide additional control for the data warehouse"
"The web interface is rusty, and the biggest problem with Pentaho is debugging and troubleshooting. It isn't easy to build the pipeline incrementally. At least in our case, it's hard to find a way to execute step by step in the debugging mode."
"I would like to see more improvements with AS400 DB2."
"It could be better integrated with programming languages, like Python and R. Right now, if I want to run a Python code on one of my ETLs, it is a bit difficult to do. It would be great if we have some modules where we could code directly in a Python language. We don't really have a way to run Python code natively."
"​There is not a data quality or MDM solution in the Pentaho DI suite.​"
"The testing and quality could really improve. Every time that there is a major release, we are very nervous about what is going to get broken. We have had a lot of experience with that, as even the latest one was broken. Some basic things get broken. That doesn't look good for Hitachi at all. If there is one place I would advise them to spend some money and do some effort, it is with the quality. It is not that hard to start putting in some unit tests so basic things don't get broken when they do a new release. That just looks horrible, especially for an organization like Hitachi."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
"The solution's community support could be improved."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"I would improve the dashboard features as they are not very user-friendly."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
 

Pricing and Cost Advice

"For most development tasks, the Enterprise edition should be sufficient. It depends on the type of support that you require for your production environment."
"I mostly used the open-source version. I didn't work with a license."
"If a company is looking for an ETL solution and wants to integrate it with their tech stack but doesn't want to spend a bunch of money, Pentaho is a good solution"
"You don't need the Enterprise Edition, you can go with the Community Edition. That way you can use it for free and, for free, it's a pretty good tool to use."
"The cost of these types of solutions are expensive. So, we really appreciate what we get for our money. Though, we don't think of the solution as a top-of-the-line solution or anything like that."
"You need to go through the paid version to have Hitachi Lumada specialized support. However, if you are using the free version, then you will have only the community support. You will depend on the releases from Hitachi to solve some problem or questions that you have, such as bug fixes. You will need to wait for the newest versions or releases to solve these types of problems."
"There was a cost analysis done and Pentaho did favorably in terms of cost."
"I use it because it is free. I download from their page for free. I don't have to pay for a license. With other tools, I have to pay for the licenses. That is why I use Pentaho."
"The solution provides value for money, and we are currently using its community edition."
"This is an open-source product that can be used free of charge."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
838,713 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
21%
Computer Software Company
15%
Government
8%
Comms Service Provider
5%
Financial Services Firm
25%
Computer Software Company
18%
Manufacturing Company
7%
Retailer
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

Which ETL tool would you recommend to populate data from OLTP to OLAP?
Hi Rajneesh, yes here is the feature comparison between the community and enterprise edition : https://www.hitachivantara.com/en-us/pdf/brochure/leverage-open-source-benefits-with-assurance-of-hita...
What do you think can be improved with Hitachi Lumada Data Integrations?
In my opinion, the reporting side of this tool needs serious improvements. In my previous company, we worked with Hitachi Lumada Data Integration and while it does a good job for what it’s worth, ...
What do you use Hitachi Lumada Data Integrations for most frequently?
My company has used this product to transform data from databases, CSV files, and flat files. It really does a good job. We were most satisfied with the results in terms of how many people could us...
What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
 

Also Known As

Hitachi Lumada Data Integration, Kettle, Pentaho Data Integration
No data available
 

Overview

 

Sample Customers

66Controls, Providential Revenue Agency of Ro Negro, NOAA Information Systems, Swiss Real Estate Institute
Information Not Available
Find out what your peers are saying about Pentaho Data Integration and Analytics vs. Spring Cloud Data Flow and other solutions. Updated: January 2025.
838,713 professionals have used our research since 2012.