Try our new research platform with insights from 80,000+ expert users

Spring Cloud Data Flow vs Teradata comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Oct 6, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Customer Service

No sentiment score available
Sentiment score
8.0
Teradata's customer service is praised for expertise but criticized for delays, with ratings ranging from 6 to 10 out of 10.
The technical support from Teradata is quite advanced.
Customer support is very good, rated eight out of ten under our essential agreement.
 

Room For Improvement

No sentiment score available
Sentiment score
4.4
Teradata users seek better transaction processing, enhanced scalability, modern interface, cloud focus, advanced analytics, and improved support and documentation.
Unlike SQL and Oracle, which have in-built replication capabilities, we don't have similar functionality with Teradata.
 

Scalability Issues

No sentiment score available
Sentiment score
5.2
Teradata is praised for its scalability, speed, and flexibility, despite some complexity and cost challenges in cloud environments.
This expansion can occur without incurring downtime or taking systems offline.
Scalability is complex as you need to purchase a license and coordinate with Teradata for additional disk space and CPU.
 

Setup Cost

No sentiment score available
No sentiment score available
Teradata's high cost is justified by its superior performance, competitive total ownership costs, and flexible pricing models.
Initially, it may seem expensive compared to similar cloud databases, however, it offers significant value in performance, stability, and overall output once in use.
Teradata is much more expensive than SQL, which is well-performed and cheaper.
 

Stability Issues

No sentiment score available
Sentiment score
9.6
Teradata excels in stability with minimal downtime, robust architecture, 99.9% uptime, and reliable performance, despite minor large dataset issues.
I find the stability to be almost a ten out of ten.
The workload management and software maturity provide a reliable system.
 

Valuable Features

No sentiment score available
No sentiment score available
Teradata offers efficient, scalable data management with fast query performance, robust security, automation, and cloud flexibility for businesses.
The data mover is valuable over the last two years as it allows us to achieve data replication to our disaster recovery systems.
 

Categories and Ranking

Spring Cloud Data Flow
Ranking in Data Integration
22nd
Average Rating
7.8
Reviews Sentiment
6.7
Number of Reviews
9
Ranking in other categories
Streaming Analytics (10th)
Teradata
Ranking in Data Integration
17th
Average Rating
8.2
Reviews Sentiment
6.9
Number of Reviews
76
Ranking in other categories
Customer Experience Management (3rd), Backup and Recovery (20th), Relational Databases Tools (7th), Data Warehouse (3rd), BI (Business Intelligence) Tools (10th), Marketing Management (6th), Cloud Data Warehouse (6th)
 

Featured Reviews

NitinGoyal - PeerSpot reviewer
Has a plug-and-play model and provides good robustness and scalability
The solution's community support could be improved. I don't know why the Spring Cloud Data Flow community is not very strong. Community support is very limited whenever you face any problem or are stuck somewhere. I'm not sure whether it has improved in the last six months because this pipeline was set up almost two years ago. I struggled with that a lot. For example, there was limited support whenever I got an exception and sought help from Stack Overflow or different forums. Interacting with Kubernetes needs a few certificates. You need to define all the certificates within your application. With the help of those certificates, your Java application or Spring Cloud Data Flow can interact with Kubernetes. I faced a lot of hurdles while placing those certificates. Despite following the official documentation to define all the replicas, readiness, and liveliness probes within the Spring Cloud Data Flow application, it was not working. So, I had to troubleshoot while digging in and debugging the internals of Spring Cloud Data Flow at that time. It was just a configuration mismatch, and I was doing nothing weird. There was a small spelling difference between how Spring Cloud Data Flow was expecting it and how I passed it. I was just following the official documentation.
SurjitChoudhury - PeerSpot reviewer
Offers seamless integration capabilities and performance optimization features, including extensive indexing and advanced tuning capabilities
We created and constructed the warehouse. We used multiple loading processes like MultiLoad, FastLoad, and Teradata Pump. But those are loading processes, and Teradata is a powerful tool because if we consider older technologies, its architecture with nodes, virtual processes, and nodes is a unique concept. Later, other technologies like Informatica also adopted the concept of nodes from Informatica PowerCenter version 7.x. Previously, it was a client-server architecture, but later, it changed to the nodes concept. Like, we can have the database available 24/7, 365 days. If one node fails, other nodes can take care of it. Informatica adopted all those concepts when it changed its architecture. Even Oracle databases have since adapted their architecture to them. However, this particular Teradata company initially started with its own different type of architecture, which major companies later adopted. It has grown now, but initially, whatever query we sent it would be mapped into a particular component. After that, it goes to the virtual processor and down to the disk, where the actual physical data is loaded. So, in between, there's a map, which acts like a data dictionary. It also holds information about each piece of data, where it's loaded, and on which particular virtual processor or node the data resides. Because Teradata comes with a four-node architecture, or however many nodes we choose, the cost is determined by that initially. So, what type of data does each and every node hold? It's a shared-no architecture. So, whatever task is given to a virtual processor it will be processed. If there's a failure, then it will be taken care of by another virtual processor. Moreover, this solution has impacted the query time and data performance. In Teradata, there's a lot of joining, partitioning, and indexing of records. There are primary and secondary indexes, hash indexing, and other indexing processes. To improve query performance, we first analyze the query and tune it. If a join needs a secondary index, which plays a major role in filtering records, we might reconstruct that particular table with the secondary index. This tuning involves partitioning and indexing. We use these tools and technologies to fine-tune performance. When it comes to integration, tools like Informatica seamlessly connect with Teradata. We ensure the Teradata database is configured correctly in Informatica, including the proper hostname and properties for the load process. We didn't find any major complexity or issues with integration. But, these technologies are quite old now. With newer big data technologies, we've worked with a four-layer architecture, pulling data from Hadoop Lake to Teradata. We configure Teradata with the appropriate hostname and credentials, and use BTEQ queries to load data. Previously, we converted the data warehouse to a CLD model as per Teradata's standardized procedures, moving from an ETL to an EMT process. This allowed us to perform gap analysis on missing entities based on the model and retrieve them from the source system again. We found Teradata integration straightforward and compatible with other tools.
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
816,406 professionals have used our research since 2012.
 

Comparison Review

it_user232068 - PeerSpot reviewer
Aug 5, 2015
Netezza vs. Teradata
Original published at https://www.linkedin.com/pulse/should-i-choose-net Two leading Massively Parallel Processing (MPP) architectures for Data Warehousing (DW) are IBM PureData System for Analytics (formerly Netezza) and Teradata. I thought talking about the similarities and differences…
 

Top Industries

By visitors reading reviews
Financial Services Firm
29%
Computer Software Company
17%
Manufacturing Company
7%
Retailer
6%
Financial Services Firm
26%
Computer Software Company
10%
Manufacturing Company
8%
Healthcare Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What needs improvement with Spring Cloud Data Flow?
I would improve the dashboard features as they are not very user-friendly. Another area for improvement is the documentation, as it is not very precise. There are limited resources available on Spr...
What is your primary use case for Spring Cloud Data Flow?
I am a developer using Spring Cloud Dataflow. We primarily use it to convert our applications from monolithic to microservices. The solution is used for scheduling tasks in a specific order and ens...
What advice do you have for others considering Spring Cloud Data Flow?
My advice would be to thoroughly review the documentation and understand if Spring Cloud Dataflow is the right solution for your application. For applications with only one or two microservices, it...
Comparing Teradata and Oracle Database, which product do you think is better and why?
I have spoken to my colleagues about this comparison and in our collective opinion, the reason why some people may declare Teradata better than Oracle is the pricing. Both solutions are quite simi...
Which companies use Teradata and who is it most suitable for?
Before my organization implemented this solution, we researched which big brands were using Teradata, so we knew if it would be compatible with our field. According to the product's site, the comp...
Is Teradata a difficult solution to work with?
Teradata is not a difficult product to work with, especially since they offer you technical support at all levels if you just ask. There are some features that may cause difficulties - for example,...
 

Also Known As

No data available
IntelliFlex, Aster Data Map Reduce, , QueryGrid, Customer Interaction Manager, Digital Marketing Center, Data Mover, Data Stream Architecture
 

Learn More

 

Overview

 

Sample Customers

Information Not Available
Netflix
Find out what your peers are saying about Spring Cloud Data Flow vs. Teradata and other solutions. Updated: November 2024.
816,406 professionals have used our research since 2012.