The persistence could be better. Although ESP is designed for in-memory processing, it would be better if the solution is enhanced or improved on the persistence of the data that is kept in the memory. For example, if one server goes down and the information is stored in the memory, it is lost. Therefore, the persistence needs to be improved so that if there are more cases where the server is down, the information and data can still be intact.
What is Streaming Analytics? Streaming analytics, also known as event stream processing (ESP), refers to the analyzing and processing of large volumes of data through the use of continuous queries. Traditionally, data is moved in batches. While batch processing may be an efficient method for handling huge pools of data, it is not suitable for time-sensitive, “in-motion” data that could otherwise be streamed, since that data can expire by the time it is processed. By using streaming...
The persistence could be better. Although ESP is designed for in-memory processing, it would be better if the solution is enhanced or improved on the persistence of the data that is kept in the memory. For example, if one server goes down and the information is stored in the memory, it is lost. Therefore, the persistence needs to be improved so that if there are more cases where the server is down, the information and data can still be intact.