

Amazon EMR and Cloudera Data Platform both compete in the realm of big data processing solutions. Amazon EMR has an advantage in scalability and integration, while Cloudera Data Platform stands out in governance and open-source tool integration.
Features: Amazon EMR utilizes EC2 and S3 for effective large data set processing and offers seamless integration with various cloud services. It is known for its auto-scaling feature and ease of data processing. Cloudera Data Platform excels with robust open-source tools like Ambari and Ranger, ensuring data governance and security. Its HDFS and YARN capabilities support efficient data storage and management.
Room for Improvement: Amazon EMR faces challenges in cluster configuration and job start times, with users seeking improved monitoring and cost management. Enhancements in support for newer technologies are also desired. Cloudera Data Platform users highlight the need for improved UI, security, and integration with AI and ML capabilities, along with more customization options.
Ease of Deployment and Customer Service: Amazon EMR is typically deployed on public clouds, offering robust support but with variable response times. Cloudera Data Platform supports public, private, and hybrid clouds, with customer service responsive in critical situations but inconsistent overall.
Pricing and ROI: Amazon EMR has a pay-as-you-go model that can become expensive if not monitored closely but offers significant scalability benefits. Cloudera Data Platform leverages open-source advantages with costs influenced by scale and service needs, making it often cost-effective for enterprises. Both platforms deliver considerable ROI, with notable savings compared to traditional systems.
There are licensing costs that have been saved when we moved some of the data platforms, decommissioned them, and moved on to this platform.
In terms of return on investment, I see great changes in operational effectiveness measured by RTO when comparing on-premises solutions with cloud solutions.
A specific example of the positive impact of Cloudera Data Platform is the clearly saved time and improved performance, which is the main result of it.
They help with billing, cost determination, IAM properties, security compliance, and deployment and migration activities.
We get all call support, screen sharing support, and immediate support, so there are no problems.
I would rate the technical support from Amazon as ten out of ten.
I would rate the customer support of Cloudera Data Platform ten out of ten.
I have communicated with technical support, and they are responsive and helpful.
Cloudera support is timely and responsive, adhering to the SLAs they provide.
Scalability can be provisioned using the auto-scaling feature, EC2 instances, on-demand instances, and storage locations like block storage, S3, or file storage.
CDP allows for easy, mostly automated scalability where I can schedule job workflows, fine-tune system resource metrics, and add nodes with just a click.
They have the cloud burst feature available where if the on-premises capacity is not sufficient at a point in time, you can run that Spark job on the cloud itself.
The ability to scale processing capacity on demand for batch jobs without impacting other workloads, and support for a growing number of concurrent users and teams accessing the platform simultaneously are significant advantages.
Regular updates, patch installations, monitoring, logging, alerting, and disaster recovery activities are crucial for maintaining stability.
Sometimes the end user is not experienced or does not have all the expertise related to Cloudera specifically, making it very difficult to manage properly
Sometimes a node goes down, but it automatically returns to a healthy state.
Cloudera Data Platform is pretty stable in my experience; there are not any downtime or reliability issues.
The cost factor differs significantly. When you run Spark application on EKS, you run at the pod level, so you can control the compute cost. But in Amazon EMR, when you have to run one application, you have to launch the entire EC2.
There is room for improvement with respect to retries, handling the volume of data on S3 buckets, cluster provisioning, scaling, termination, security, and integration between services like S3, Glue, Lake Formation, and DynamoDB.
I have thoughts on what would be great to see in the product, such as AI/ML features or additional options.
We aim to address these issues with a Kubernetes-based platform that will simplify the task of upgrading services.
Cloudera Data Platform should include additional capabilities and features similar to those offered by other data management solutions like Azure and Databricks.
Cloudera Data Platform can be improved by addressing the feasibility of using it in the cloud; there are some complexities around the components used in cloud by Cloudera Data Platform that are not really convenient.
Costs are involved based on cluster resources, data volumes, EC2 instances, instance sizes, Kubernetes, Docker services, storage, and data transfers.
I would rate the price for Amazon EMR, where one is high and ten is low, as a good one.
Initially, CDH had a straightforward pricing model based on nodes, but CDP includes factors like processors, cores, terabytes, and drives, making it difficult to calculate costs.
We find Cloudera Data Platform to be cost-effective.
So far, I would say that it is competitive pricing that we have received.
Amazon EMR helps in scalability, real-time and batch processing of data, handling efficient data sources, and managing data lakes, data stores, and data marts on file systems and in S3 buckets.
Amazon EMR provides out-of-the-box functionality because we can deploy and get Spark functionality over Hadoop.
The features at Amazon EMR that I have found most valuable are fully customizable functions.
By using the Hadoop File System for distributed storage, we have 1.5 petabytes of physical storage with 500 terabytes of effective storage due to a replication factor of three.
The Ranger integration makes it more flexible and reliable for me by allowing control over data access, specifying who can access at what level, such as table level, masking, or data layer level.
What stands out the most in Cloudera Manager are SDX, which provide centralized control for governance, security, and data lineage across multiple sources.
| Product | Market Share (%) |
|---|---|
| Amazon EMR | 10.8% |
| Cloudera Distribution for Hadoop | 15.1% |
| HPE Data Fabric | 14.9% |
| Other | 59.2% |
| Product | Market Share (%) |
|---|---|
| Cloudera Data Platform | 7.6% |
| Palantir Foundry | 15.6% |
| Informatica Intelligent Data Management Cloud (IDMC) | 10.8% |
| Other | 66.0% |

| Company Size | Count |
|---|---|
| Small Business | 6 |
| Midsize Enterprise | 5 |
| Large Enterprise | 12 |
| Company Size | Count |
|---|---|
| Small Business | 8 |
| Midsize Enterprise | 7 |
| Large Enterprise | 26 |
Cloudera Data Platform offers a powerful fusion of Hadoop technology and user-centric tools, enabling seamless scalability and open-source flexibility. It supports large-scale data operations with tools like Ranger and Cloudera Data Science Workbench, offering efficient cluster management and containerization capabilities.
Designed to support extensive data needs, Cloudera Data Platform encompasses a comprehensive Hadoop stack, which includes HDFS, Hive, and Spark. Its integration with Ambari provides user-friendliness in management and configuration. Despite its strengths in scalability and security, Cloudera Data Platform requires enhancements in multi-tenant implementation, governance, and UI, while attribute-level encryption and better HDFS namenode support are also needed. Stability, especially regarding the Hue UI, financial costs, and disaster recovery are notable challenges. Additionally, integration with cloud storage and deployment methods could be more intuitive to enhance user experience, along with more effective support and community engagement.
What are the key features?Cloudera Data Platform is implemented extensively across industries like hospitality for data science activities, including managing historical data. Its adaptability extends to operational analytics for sectors like oil & gas, finance, and healthcare, often enhanced by Hortonworks Data Platform for data ingestion and analytics tasks.
We monitor all Hadoop reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.