Try our new research platform with insights from 80,000+ expert users

AtScale Adaptive Analytics (A3) vs Dremio comparison

 

Categories and Ranking

AtScale Adaptive Analytics ...
Average Rating
5.0
Number of Reviews
1
Ranking in other categories
Data Virtualization (4th), BI (Business Intelligence) Tools (38th), Data Governance (34th), BI on Hadoop (3rd)
Dremio
Average Rating
8.6
Reviews Sentiment
5.9
Number of Reviews
6
Ranking in other categories
Cloud Data Warehouse (10th), Data Science Platforms (8th)
 

Mindshare comparison

While both are Business Intelligence solutions, they serve different purposes. AtScale Adaptive Analytics (A3) is designed for Data Virtualization and holds a mindshare of 10.6%, down 12.7% compared to last year.
Dremio, on the other hand, focuses on Data Science Platforms, holds 4.1% mindshare, up 2.1% since last year.
Data Virtualization
Data Science Platforms
 

Featured Reviews

it_user822762 - PeerSpot reviewer
The GUI interface is nice and easy to use, but the organization of the icons is not saved across users
Connecting to a Hadoop database to create a cube to connect to Tableau. We want to be able to easily create cubes which can be connected to Tableau for visualization The product had many issues. We had great collaboration with the product development team, but the product was not able to meet our…
MikeWalker - PeerSpot reviewer
It enables you to manage changes more effectively than any other platform.
Dremio enables you to manage changes more effectively than any other data warehouse platform. There are two things that come into play. One is data lineage. If you are looking at data in Dremio, you may want to know the source and what happened to it along the way or how it may have been transformed in the data pipeline to get to the point where you're consuming it. There's another thing called data providence. They're tied together. Data providence allows you to go back and recreate the data at any particular point in time. It's extremely important for compliance and governance issues because data changes all time. How did it change? What was it three days or months ago? You may have made some decisions based on data that was three months old, so you might need to revisit those. It's essential for things like machine learning and deep learning, where you are generating AI models off data. When the model stops working or doesn't work as expected, you need to figure out why. You have to go back and adjust the datasets used to train the model. We do that through an open-source project called Nessie, which is their basis for providing data lineage and data province capabilities. It's super powerful. Arrow is another open-source project for storing data in memory and performing data query operations. Data sits on a disk in one format. If you want to do anything with data, you have to load it into your computer and put it into memory so you can work with it. Arrow provides a format in memory that enables the whole library to perform various operations on that data. Every vendor has its own way of representing data in memory. They've latched onto an industry standard and developed it so it's open. Now people can use the exact same format in memory to do operations and use the library set to perform functions on data. New developers can decide if they want to develop their own memory format or use one that's already there. Data transfer is a massive problem when you're working with large datasets, doing advanced analytics, and trying to train machine learning or deep learning models. What happens often is companies downsample their data sets to do training on models because transferring and managing data on a deep learning or machine learning platform is too much.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The GUI interface is nice and easy to use."
"Dremio enables you to manage changes more effectively than any other data warehouse platform. There are two things that come into play. One is data lineage. If you are looking at data in Dremio, you may want to know the source and what happened to it along the way or how it may have been transformed in the data pipeline to get to the point where you're consuming it."
"Dremio allows querying the files I have on my block storage or object storage."
"Everyone uses Dremio in my company; some use it only for the analytics function."
"We primarily use Dremio to create a data framework and a data queue."
"The most valuable feature of Dremio is it can sit on top of any other data storage, such as Amazon S3, Azure Data Factory, SGFS, or Hive. The memory competition is good. If you are running any kind of materialized view, you'd be running in memory."
"Dremio gives you the ability to create services which do not require additional resources and sterilization."
 

Cons

"The product was not able to meet our 10 second refresh requirements."
"The organization of the icons is not saved across users."
"There was an issue with the incremental aggregation not working as indicated."
"Dremio takes a long time to execute large queries or the executing of correlated queries or nested queries. Additionally, the solution could improve if we could read data from the streaming pipelines or if it allowed us to create the ETL pipeline directly on top of it, similar to Snowflake."
"It shows errors sometimes."
"I cannot use the recursive common table expression (CTE) in Dremio because the support page says it's currently unsupported."
"Dremio doesn't support the Delta connector. Dremio writes the IT support for Delta, but the support isn't great. There is definitely room for improvement."
"They have an automated tool for building SQL queries, so you don't need to know SQL. That interface works, but it could be more efficient in terms of the SQL generated from those things. It's going through some growing pains. There is so much value in tools like these for people with no SQL experience. Over time, Dermio will make these capabilities more accessible to users who aren't database people."
"We've faced a challenge with integrating Dremio and Databricks, specifically regarding authentication. It is not shaking hands very easily."
 

Pricing and Cost Advice

Information not available
"Dremio is less costly competitively to Snowflake or any other tool."
"Right now the cluster costs approximately $200,000 per month and is based on the volume of data we have."
report
Use our free recommendation engine to learn which Data Virtualization solutions are best for your needs.
816,562 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
21%
Manufacturing Company
16%
Computer Software Company
10%
Healthcare Company
8%
Financial Services Firm
32%
Computer Software Company
10%
Manufacturing Company
8%
Retailer
4%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
No data available
 

Questions from the Community

Ask a question
Earn 20 points
What do you like most about Dremio?
Dremio allows querying the files I have on my block storage or object storage.
What is your experience regarding pricing and costs for Dremio?
Every tool has a value based on its visualization, and the pricing is worth its value.
What needs improvement with Dremio?
Dremio's interface is good, but it has a few limitations. I cannot do a lot of things with ANSI SQL or basic SQL. I cannot use the recursive common table expression (CTE) in Dremio because the supp...
 

Also Known As

AtScale, AtScale Intelligence Platform
No data available
 

Learn More

Video not available
 

Overview

 

Sample Customers

Rakuten, TD Bank, Aetna, Glaxo-Smith Kline, Biogen, Toyota, Tyson
UBS, TransUnion, Quantium, Daimler, OVH