Try our new research platform with insights from 80,000+ expert users

Azure Data Factory vs Dremio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 18, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure Data Factory
Ranking in Cloud Data Warehouse
3rd
Average Rating
8.0
Reviews Sentiment
6.9
Number of Reviews
90
Ranking in other categories
Data Integration (1st)
Dremio
Ranking in Cloud Data Warehouse
9th
Average Rating
8.6
Reviews Sentiment
7.1
Number of Reviews
8
Ranking in other categories
Data Science Platforms (9th)
 

Mindshare comparison

As of April 2025, in the Cloud Data Warehouse category, the mindshare of Azure Data Factory is 8.4%, down from 10.1% compared to the previous year. The mindshare of Dremio is 10.8%, up from 4.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Cloud Data Warehouse
 

Featured Reviews

Joy Maitra - PeerSpot reviewer
Facilitates seamless data pipeline creation with good analytics and and thorough monitoring
Azure Data Factory is a low code, no code platform, which is helpful. It provides many prebuilt functionalities that assist in building data pipelines. Also, it facilitates easy transformation with all required functionalities for analytics. Furthermore, it connects to different sources out-of-the-box, making integration much easier. The monitoring is very thorough, though a more readable version would be appreciable.
KamleshPant - PeerSpot reviewer
Solution offers quick data connection with an edge in computation
It's almost similar, yet it's better than Starburst in spinning up or connecting to the new source since it's on SaaS. It is a similar experience between the based application and cloud-based application. You just get the source, connect the data, get visualization, get connected, and do whatever you want. They say data reflection is one way where they do the caching and all that. Starburst also does the caching. In Starburst, you have a data product. Here, the data product comes from a reflection perspective. The y are working on a columnar memory map, columnar computation. That will have some edge in computation.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The scalability of the product is impressive."
"One advantage of Azure Data Factory is that it's fast, unlike SSIS and other on-premise tools. It's also very convenient because it has multiple connectors. The availability of native connectors allows you to connect to several resources to analyze data streams."
"The most valuable feature is the copy activity."
"The most valuable feature of this solution would be ease of use."
"Azure Data Factory is a low code, no code platform, which is helpful."
"The most important feature is that it can help you do the multi-threading concepts."
"The best part of this product is the extraction, transformation, and load."
"UI is easy to navigate and I can retrieve VTL code without knowing in-depth coding languages."
"It's almost similar, yet it's better than Starburst in spinning up or connecting to the new source since it's on SaaS."
"We primarily use Dremio to create a data framework and a data queue."
"Dremio enables you to manage changes more effectively than any other data warehouse platform. There are two things that come into play. One is data lineage. If you are looking at data in Dremio, you may want to know the source and what happened to it along the way or how it may have been transformed in the data pipeline to get to the point where you're consuming it."
"Dremio allows querying the files I have on my block storage or object storage."
"Dremio is very easy to use for building queries."
"The most valuable feature of Dremio is it can sit on top of any other data storage, such as Amazon S3, Azure Data Factory, SGFS, or Hive. The memory competition is good. If you are running any kind of materialized view, you'd be running in memory."
"Dremio gives you the ability to create services which do not require additional resources and sterilization."
"Everyone uses Dremio in my company; some use it only for the analytics function."
 

Cons

"The user interface could use improvement. It's not a major issue but it's something that can be improved."
"This solution is currently only useful for basic data movement and file extractions, which we would like to see developed to handle more complex data transformations."
"There's space for improvement in the development process of the data pipelines."
"Some of the optimization techniques are not scalable."
"Azure Data Factory uses many resources and has issues with parallel workflows."
"The pricing scheme is very complex and difficult to understand."
"The product integration with advanced coding options could cater to users needing more customization."
"Data Factory would be improved if it were a little more configuration-oriented and not so code-oriented and if it had more automated features."
"They have an automated tool for building SQL queries, so you don't need to know SQL. That interface works, but it could be more efficient in terms of the SQL generated from those things. It's going through some growing pains. There is so much value in tools like these for people with no SQL experience. Over time, Dermio will make these capabilities more accessible to users who aren't database people."
"Dremio takes a long time to execute large queries or the executing of correlated queries or nested queries. Additionally, the solution could improve if we could read data from the streaming pipelines or if it allowed us to create the ETL pipeline directly on top of it, similar to Snowflake."
"They need to have multiple connectors. Starburst is rich in connectors, however, they are lacking Salesforce connectivity as of today."
"They need to have multiple connectors."
"It shows errors sometimes."
"Dremio doesn't support the Delta connector. Dremio writes the IT support for Delta, but the support isn't great. There is definitely room for improvement."
"There are performance issues at times due to our limited experience with Dremio, and the fact that we are running it on single nodes using a community version."
"I cannot use the recursive common table expression (CTE) in Dremio because the support page says it's currently unsupported."
 

Pricing and Cost Advice

"ADF is cheaper compared to AWS."
"The licensing model for Azure Data Factory is good because you won't have to overpay. Pricing-wise, the solution is a five out of ten. It was not expensive, and it was not cheap."
"The pricing is pay-as-you-go or reserve instance. Of the two options, reserve instance is much cheaper."
"The solution is cheap."
"The pricing is a bit on the higher end."
"The solution's fees are based on a pay-per-minute use plus the amount of data required to process."
"There's no licensing for Azure Data Factory, they have a consumption payment model. How often you are running the service and how long that service takes to run. The price can be approximately $500 to $1,000 per month but depends on the scaling."
"It seems very low initially, but as the data grows, the solution’s bills grow exponentially."
"Right now the cluster costs approximately $200,000 per month and is based on the volume of data we have."
"Dremio is less costly competitively to Snowflake or any other tool."
report
Use our free recommendation engine to learn which Cloud Data Warehouse solutions are best for your needs.
848,207 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
14%
Computer Software Company
12%
Manufacturing Company
9%
Healthcare Company
7%
Financial Services Firm
32%
Computer Software Company
10%
Manufacturing Company
7%
Healthcare Company
4%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

How do you select the right cloud ETL tool?
AWS Glue and Azure Data factory for ELT best performance cloud services.
How does Azure Data Factory compare with Informatica PowerCenter?
Azure Data Factory is flexible, modular, and works well. In terms of cost, it is not too pricey. It offers the stability and reliability I am looking for, good scalability, and is easy to set up an...
How does Azure Data Factory compare with Informatica Cloud Data Integration?
Azure Data Factory is a solid product offering many transformation functions; It has pre-load and post-load transformations, allowing users to apply transformations either in code by using Power Q...
What do you like most about Dremio?
Dremio allows querying the files I have on my block storage or object storage.
What is your experience regarding pricing and costs for Dremio?
The licensing is very expensive. We need a license to scale as we are currently using the community version.
What needs improvement with Dremio?
They need to have multiple connectors. Starburst is rich in connectors, however, they are lacking Salesforce connectivity as of today. They don't have Salesforce connectivity. However, Starburst do...
 

Overview

 

Sample Customers

1. Adobe 2. BMW 3. Coca-Cola 4. General Electric 5. Johnson & Johnson 6. LinkedIn 7. Mastercard 8. Nestle 9. Pfizer 10. Samsung 11. Siemens 12. Toyota 13. Unilever 14. Verizon 15. Walmart 16. Accenture 17. American Express 18. AT&T 19. Bank of America 20. Cisco 21. Deloitte 22. ExxonMobil 23. Ford 24. General Motors 25. IBM 26. JPMorgan Chase 27. Microsoft (Azure Data Factory is developed by Microsoft) 28. Oracle 29. Procter & Gamble 30. Salesforce 31. Shell 32. Visa
UBS, TransUnion, Quantium, Daimler, OVH
Find out what your peers are saying about Azure Data Factory vs. Dremio and other solutions. Updated: March 2025.
848,207 professionals have used our research since 2012.