Try our new research platform with insights from 80,000+ expert users

Cloudera DataFlow vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Cloudera DataFlow
Ranking in Streaming Analytics
17th
Average Rating
7.4
Reviews Sentiment
6.5
Number of Reviews
5
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
91
Ranking in other categories
Cloud Data Warehouse (9th), Data Science Platforms (1st)
 

Mindshare comparison

As of October 2025, in the Streaming Analytics category, the mindshare of Cloudera DataFlow is 1.3%, down from 1.3% compared to the previous year. The mindshare of Databricks is 12.5%, down from 12.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Databricks12.5%
Cloudera DataFlow1.3%
Other86.2%
Streaming Analytics
 

Featured Reviews

Mohamed-Saied - PeerSpot reviewer
Efficient data integration and workflow scheduling elevate project performance
Cloudera DataFlow is used as an ETL or ELT solution within Cloudera's data pipeline. Our organization heavily relies on it for data ingestion, transformation, and warehousing. It is also used daily for operational tasks, and it integrates well within Cloudera's ecosystem for high performance and…
ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"DataFlow's performance is okay."
"Cloudera DataFlow is fully compatible with Cloudera's ecosystem and offers high efficiency through native connectors for various ecosystems."
"The initial setup was not so difficult"
"This solution is very scalable and robust."
"The most effective features are data management and analytics."
"The most valuable feature of Databricks is the integration with Microsoft Azure."
"The solution is very easy to use."
"The integration with Python and the notebooks really helps."
"The built-in optimization recommendations halved the speed of queries and allowed us to reach decision points and deliver insights very quickly."
"I like how easy it is to share your notebook with others. You can give people permission to read or edit. I think that's a great feature. You can also pull in code from GitHub pretty easily. I didn't use it that often, but I think that's a cool feature."
"The initial setup phase of Databricks was good."
"I like the ability to use workspaces with other colleagues because you can work together even without seeing the other team's job."
"This solution offers a lake house data concept that we have found exciting. We are able to have a large amount of data in a data lake and can manage all relational activities."
 

Cons

"It is not easy to use the R language. Though I don't know if it's possible, I believe it is possible, but it is not the best language for machine learning."
"Cloudera DataFlow's UI interface could be enhanced significantly. Memory handling can also be improved to be better than it is today."
"Although their workflow is pretty neat, it still requires a lot of transformation coding; especially when it comes to Python and other demanding programming languages."
"It's an outdated legacy product that doesn't meet the needs of modern data analysts and scientists."
"There has been a significant evolution in databases. One area of improvement is the Databricks File System (DBFS), where command-line challenges arise when accessing files."
"Databricks is an analytics platform. It should offer more data science. It should have more features for data scientists to work with."
"The product could be improved by offering an expansion of their visualization capabilities, which currently assists in development in their notebook environment."
"I would like to see more documentation in terms of how an end-user could use it, and users like me can easily try it and implement use cases."
"There should be better integration with other platforms."
"Databricks could improve in some of its functionality."
"The ability to customize our own pipelines would enhance the product, similar to what's possible using ML files in Microsoft Azure DevOps."
"The product should incorporate more learning aspects. It needs to have a free trial version that the team can practice."
 

Pricing and Cost Advice

"DataFlow isn't expensive, but its value for money isn't great."
"The licensing costs of Databricks is a tiered licensing regime, so it is flexible."
"The price of Databricks is reasonable compared to other solutions."
"I'm not involved in the financing, but I can say that the solution seemed reasonably priced compared to the competitors. Similar products are usually in the same price range. With five being affordable and one being expensive, I would rate Databricks a four out of five."
"We pay as we go, so there isn't a fixed price. It's charged by the unit. I don't have any details detail about how they measure this, but it should be a mix between processing and quantity of data handled. We run a simulation based on our use cases, which gives us an estimate. We've been monitoring this, and the costs have met our expectations."
"The licensing costs of Databricks depend on how many licenses we need, depending on which Databricks provides a lot of discounts."
"The cost is around $600,000 for 50 users."
"The solution is affordable."
"I do not exactly know the costs, but one of our clients pays between $100 USD and $200 USD monthly."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
869,883 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
University
25%
Computer Software Company
14%
Performing Arts
10%
Financial Services Firm
8%
Financial Services Firm
18%
Computer Software Company
9%
Manufacturing Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
By reviewers
Company SizeCount
Small Business25
Midsize Enterprise12
Large Enterprise56
 

Questions from the Community

What do you like most about Cloudera DataFlow?
The most effective features are data management and analytics.
What needs improvement with Cloudera DataFlow?
Cloudera DataFlow's UI interface could be enhanced significantly. Memory handling can also be improved to be better than it is today.
What is your primary use case for Cloudera DataFlow?
Cloudera DataFlow is used as an ETL or ELT solution within Cloudera's data pipeline. Our organization heavily relies on it for data ingestion, transformation, and warehousing. It is also used daily...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Also Known As

CDF, Hortonworks DataFlow, HDF
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

Clearsense
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Cloudera DataFlow vs. Databricks and other solutions. Updated: September 2025.
869,883 professionals have used our research since 2012.