Try our new research platform with insights from 80,000+ expert users

Databricks vs Dataiku comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Apr 20, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Databricks
Ranking in Data Science Platforms
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
89
Ranking in other categories
Cloud Data Warehouse (7th), Streaming Analytics (1st)
Dataiku
Ranking in Data Science Platforms
6th
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
12
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of May 2025, in the Data Science Platforms category, the mindshare of Databricks is 17.2%, down from 19.5% compared to the previous year. The mindshare of Dataiku is 12.8%, up from 8.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.
RichardXu - PeerSpot reviewer
The platform organizes workflows visually and efficiently
One of the valuable features of Dataiku is the workflow capability. It allows us to organize a workflow efficiently. The platform has a visual interface, making it much easier for educated professionals to organize their work. This feature is useful because it simplifies tasks and eliminates the need for a data scientist. If you are knowledgeable about AI, you can directly write using primitive tools like Pantera flow, PyTorch, and Scikit-learn. However, Dataiku makes this process much easier.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution is very simple and stable."
"Its lightweight and fast processing are valuable."
"The notebooks and the ability to share them with collaborators are valuable, as multiple developers can use a single cluster."
"I like the ability to use workspaces with other colleagues because you can work together even without seeing the other team's job."
"Databricks is based on a Spark cluster and it is fast. Performance-wise, it is great."
"The solution's features are fantastic and include interactive clusters that perform at top speed when compared to other solutions."
"A very valuable feature is the data processing, and the solution is specifically good at using the Spark ecosystem."
"Databricks' Lakehouse architecture has been most useful for us. The data governance has been absolutely efficient in between other kinds of solutions."
"The solution is quite stable."
"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"The advantage is that you can focus on machine learning while having access to what they call 'recipes.' These recipes allow me to preprocess and prepare data without writing any code."
"Our clients can easily drag and drop components and use them on the spot."
"Extremely easy to use with its GUI-based functionality and large compatibility with various data sources. Also, maintenance processes are much more automated than ever, with fewer errors."
"The most valuable feature of this solution is that it is one tool that can do everything, and you have the ability to very easily push your design to prediction."
"Data Science Studio's data science model is very useful."
"Cloud-based process run helps in not keeping the systems on while processes are running."
 

Cons

"I would love an integration in my desktop IDE. For now, I have to code on their webpage."
"The API deployment and model deployment are not easy on the Databricks side."
"Anyone who doesn't know SQL may find the product difficult to work with."
"There is room for improvement in the documentation of processes and how it works."
"It should have more compatible and more advanced visualization and machine learning libraries."
"Databricks' performance when serving the data to an analytics tool isn't as good as Snowflake's."
"The pricing of Databricks could be cheaper."
"Costs can quickly add up if you don't plan for it."
"One area for improvement is the need for more capabilities similar to those provided by NVIDIA for parallel machine learning training. We still encounter some integration issues."
"The interface for the web app can be a bit difficult. It needs to have better capabilities, at least for developers who like to code. This is due to the fact that everything is enabled in a single window with different tabs. For them to actually develop and do the concurrent testing that needs to be done, it takes a bit of time. That is one improvement that I would like to see - from a web app developer perspective."
"There is room for improvement in terms of allowing for more code-based features."
"The ability to have charts right from the explorer would be an improvement."
"Although known for Big Data, the processing time to process 1.8 billion records was terribly slow (five days)."
"There were stability issues: 1) SQL operations, such as partitioning, had bugs and showed wrong results. 2) Due to server downtime, scheduled processes used to fail. 3) Access to project folders was compromised (privacy issue) with wrong people getting access to confidential project folders."
"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"The license is very expensive."
 

Pricing and Cost Advice

"The solution is affordable."
"I'm not involved in the financing, but I can say that the solution seemed reasonably priced compared to the competitors. Similar products are usually in the same price range. With five being affordable and one being expensive, I would rate Databricks a four out of five."
"We pay as we go, so there isn't a fixed price. It's charged by the unit. I don't have any details detail about how they measure this, but it should be a mix between processing and quantity of data handled. We run a simulation based on our use cases, which gives us an estimate. We've been monitoring this, and the costs have met our expectations."
"The solution is based on a licensing model."
"The pricing depends on the usage itself."
"The licensing costs of Databricks is a tiered licensing regime, so it is flexible."
"The solution is a good value for batch processing and huge workloads."
"The cost for Databricks depends on the use case. I work on it as a consultant, so I'm using the client's Databricks, so it depends on how big the client is."
"Pricing is pretty steep. Dataiku is also not that cheap."
"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
850,671 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
6%
Financial Services Firm
18%
Educational Organization
11%
Manufacturing Company
9%
Computer Software Company
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What is your experience regarding pricing and costs for Dataiku Data Science Studio?
I find the pricing of Dataiku quite affordable for our customers, as they are usually large companies. However, it is a pricey solution and I primarily recommend it to bigger companies.
What needs improvement with Dataiku Data Science Studio?
There is room for improvement in terms of allowing for more code-based features. I would love for Dataiku to allow more flexibility with code-based components and provide the possibility to extend ...
What is your primary use case for Dataiku Data Science Studio?
My company sells licenses for both Dataiku and Alteryx, and we have clients who use them. I engage with several companies in telecommunications, retail, and energy to assess how our clients are uti...
 

Comparisons

 

Also Known As

Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
Dataiku DSS
 

Overview

 

Sample Customers

Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Find out what your peers are saying about Databricks vs. Dataiku and other solutions. Updated: April 2025.
850,671 professionals have used our research since 2012.