Try our new research platform with insights from 80,000+ expert users

Dataiku vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Dataiku
Ranking in Data Science Platforms
7th
Average Rating
8.0
Reviews Sentiment
7.2
Number of Reviews
9
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
4th
Average Rating
7.6
Reviews Sentiment
7.0
Number of Reviews
60
Ranking in other categories
AI Development Platforms (3rd)
 

Mindshare comparison

As of January 2025, in the Data Science Platforms category, the mindshare of Dataiku is 12.1%, up from 7.8% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 5.7%, down from 10.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Sabrine Bendimerad - PeerSpot reviewer
Saves a lot of time because I can quickly handle all the data preparation tasks and concentrate on building my machine learning algorithms
One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated. While it was theoretically possible to use GitHub with Dataiku, in practice, it was difficult to manage our code effectively and push it from Dataiku to GitHub. Another limitation was its ability to handle different types of data. While Dataiku is powerful for working with structured data, like regular or geospatial data, it struggled with more complex data types such as text and image. In addition to the challenges with GitHub integration, the limited support for diverse data types was another feature lacking at that time.
HéctorGiorgiutti - PeerSpot reviewer
Requires minimal maintenance, is scalable, and stable
The initial setup depends on the developer's knowledge of machine learning models as to whether it is easy or difficult. With a good understanding of these models, then we can get to work quickly in the environment. With 20 years of experience in IT, making applications on legacy platforms and non-web platforms, I have found that Azure has a very good implementation. The platform is so comprehensive that it doesn't matter what kind of work we do, we can find the tools needed to get the job done. In comparison to what I was doing five years ago, Azure is a great platform and I really enjoy working with it. We should allocate up to 12 percent of our project time to deployment. Depending on the complexity of the solution, we should expect to spend more time on deployment.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"If many teams are collaborating and sharing Jupyter notebooks, it's very useful."
"The solution is quite stable."
"Data Science Studio's data science model is very useful."
"Cloud-based process run helps in not keeping the systems on while processes are running."
"Traceability is vital since I manage many cohorts, and collaboration is key as I have multiple engineers substituting for one another."
"The most valuable feature is the set of visual data preparation tools."
"Extremely easy to use with its GUI-based functionality and large compatibility with various data sources. Also, maintenance processes are much more automated than ever, with fewer errors."
"In terms of what I found most valuable in Microsoft Azure Machine Learning Studio, I especially love the designer because you can just drag and drop items there and apply the logic that's already available with the designer. I love that I can use the libraries in Microsoft Azure Machine Learning Studio, so I don't have to search for the algorithms and all the relevant libraries because I can see them directly on the designer just by dragging and dropping. Though there's a bit of work during data cleansing, that's normal and can't be avoided. At least it's easy to find the relevant algorithm, apply that algorithm to the data, then get the desired output through Microsoft Azure Machine Learning Studio. I also like the API feature of the solution which is readily available for me to expose the output to any consuming application, so that takes out a lot of headache. Otherwise, I have to have a developer who knows the API, and I have to have an API app, so all that is completely taken care of by the Microsoft Azure Machine Learning Studio designer. With the solution, I can concentrate on how to improve the data quality to get quality recommendations, so this lets me concentrate on my job rather than focusing on the regular development of APIs or the pipelines, in particular, the data pipelines pulling the data from other sources. All the data is taken care of and you can also concentrate on other required auxiliary activities rather than just concentrating on machine learning."
"The ability to do the templating and be able to transfer it so that I can easily do multiple types of models and data mining is a valuable aspect of this solution. You only have to set up the flows, the templates, and the data once and then you can make modifications and test different segmentations throughout."
"I've developed a couple of chatbots using Azure OpenAI, leveraging its documented solutions and APIs. The tools available make it straightforward to implement machine learning solutions. However, there are challenges, such as hallucinations and security issues, but overall, it works well and is quite fast, allowing for the development of interesting projects."
"It's good for citizen data scientists, but also, other people can use Python or .NET code."
"The most valuable feature is data normalization."
"The notebook feature allows you to write inquiries and create dashboards. These dashboards can integrate with multiple databases, such as Excel, HANA, or SQL Server."
"The interface is very intuitive."
"It's a great option if you are fairly new and don't want to write too much code."
 

Cons

"The interface for the web app can be a bit difficult. It needs to have better capabilities, at least for developers who like to code. This is due to the fact that everything is enabled in a single window with different tabs. For them to actually develop and do the concurrent testing that needs to be done, it takes a bit of time. That is one improvement that I would like to see - from a web app developer perspective."
"The license is very expensive. It would be great to have an intermediate license for basic treatments that do not require extensive experience."
"Server up-time needs to be improved. Also, query engines like Spark and Hive need to be more stable."
"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"The license is very expensive."
"The ability to have charts right from the explorer would be an improvement."
"Dataiku still needs some coding, and that could be a difference where business data scientists would go for DataRobot more than Dataiku."
"There were stability issues: 1) SQL operations, such as partitioning, had bugs and showed wrong results. 2) Due to server downtime, scheduled processes used to fail. 3) Access to project folders was compromised (privacy issue) with wrong people getting access to confidential project folders."
"The product must improve its documentation."
"Operability with R could be improved."
"Stability-wise, you may face certain problems when you fail to refresh the data in the solution."
"While ML Studio does give you the ability to run a lot of transformations, it struggles when the transformations are a bit more complex, when your entire process is transformation-heavy."
"Easier customization and configuration would be beneficial."
"The interface is a bit overloaded."
"The price could be improved."
"In the Machine Learning Studio, particularly the Designer part, which is essentially Azure's demo designer, there is room for improvement. Many customers and users tend to switch to Microsoft Azure Multi-Joiners, which is a more basic version, but they do so internally. One area that could use enhancement is the process of connecting components. Currently, every time you want to connect a component, such as linking it to your storage or an instance like EC2, you have to input your username and password repeatedly. This can be quite cumbersome. Google, for instance, has made it more user-friendly by allowing easy access for connecting services within a workspace. In a workspace, you can set up various resources like storage, a database cluster, machine learning studio, and more. When connecting these services, there's no need to enter your username and password each time, making it a more efficient process. Another aspect to consider is the role of the designer, and they were to integrate a large language model to handle various tasks, it could significantly enhance the overall scalability and usability of the platform."
 

Pricing and Cost Advice

"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
"Pricing is pretty steep. Dataiku is also not that cheap."
"The product's pricing is reasonable."
"I rate the product price as a nine on a scale of one to ten, where ten means it is very expensive."
"The pricing for Microsoft products can be complex due to changes and being cloud-based, so it's not straightforward. I've been familiar with it for years, but sometimes details about product licenses and distribution can be unclear. For Microsoft Azure Machine Learning Studio specifically, I would rate the price a six out of ten."
"On a scale from one to ten, with ten being overpriced, I would rate the price of this solution at six."
"The solution operates on a pay-per-use model."
"It is less expensive than one of its competitors."
"There isn’t any such expensive costs and only a standard license is required."
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
831,158 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Educational Organization
16%
Manufacturing Company
9%
Computer Software Company
8%
Financial Services Firm
12%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What needs improvement with Dataiku Data Science Studio?
One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated. While it was theoretically possible to us...
What is your primary use case for Dataiku Data Science Studio?
We use the solution for data science and machine learning.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
Pricing is considered to be top-segment and should be improved. I rate the pricing as three or four on a scale of one to ten in terms of affordability.
 

Also Known As

Dataiku DSS
Azure Machine Learning, MS Azure Machine Learning Studio
 

Learn More

 

Overview

 

Sample Customers

BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Dataiku vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: January 2025.
831,158 professionals have used our research since 2012.