Try our new research platform with insights from 80,000+ expert users

Google Vertex AI vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Jan 12, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Vertex AI
Ranking in AI Development Platforms
2nd
Average Rating
8.4
Reviews Sentiment
7.4
Number of Reviews
10
Ranking in other categories
AI Infrastructure (1st)
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
3rd
Average Rating
7.6
Reviews Sentiment
7.0
Number of Reviews
61
Ranking in other categories
Data Science Platforms (4th)
 

Mindshare comparison

As of April 2025, in the AI Development Platforms category, the mindshare of Google Vertex AI is 14.0%, down from 20.3% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 7.3%, down from 13.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Serge Dahdouh - PeerSpot reviewer
A user-friendly platform that automatizes machine learning techniques with minimal effort
We work with clients who request the implementation of a certain document into a chatbot. Because of the limited knowledge of AI, our task is to link that file to the ML and provide a platform that can work as a customer service. We previously used LangChain Phython, but now it is done through Vertex AI.
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The integration of AutoML features streamlines our machine-learning workflows."
"Vertex comes with inbuilt integration with GCP for data storage."
"Vertex AI possesses multiple libraries, so it eliminates the need for extensive coding."
"The monitoring feature is a true life-saver for data scientists. I give it a ten out of ten."
"We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for training machine learning models. The AI model registry in Vertex AI is crucial for cataloging and managing various versions of the models we develop. When it comes to deploying models, we rely on Google Cloud's AI Prediction service, seamlessly integrating it into our workflow for real-time predictions or streaming. For monitoring and tracking the outcomes of model development, we employ Vertex AI Monitoring, ensuring a comprehensive understanding of the model's performance and results. This integrated approach within Vertex AI provides a unified platform for managing, deploying, and monitoring machine learning models efficiently."
"The most valuable feature we've found is the model garden, which allows us to deploy and use various models through the provided endpoints easily."
"Google Vertex AI is an out-of-the-box and very easy-to-use solution."
"It provides the most valuable external analytics."
"Anyone who isn't a programmer his whole life can adopt it. All he needs is statistics and data analysis skills."
"The ability to do the templating and be able to transfer it so that I can easily do multiple types of models and data mining is a valuable aspect of this solution. You only have to set up the flows, the templates, and the data once and then you can make modifications and test different segmentations throughout."
"Split dataset, variety of algorithms, visualizing the data, and drag and drop capability are the features I appreciate most."
"Azure Machine Learning Studio's most valuable features are the package from Azure AutoML. It is quite powerful compared to the building of ML in Databricks or other AutoMLs from other companies, such as Google and Amazon."
"Scalability, in terms of running experiments concurrently is good. At max, I was able to run three different experiments concurrently."
"I find Microsoft Azure Machine Learning Studio advantageous because it allows integration with Titan Scratch and offers an easy-to-use drag-and-drop menu for developing machine learning models."
"In terms of what I found most valuable in Microsoft Azure Machine Learning Studio, I especially love the designer because you can just drag and drop items there and apply the logic that's already available with the designer. I love that I can use the libraries in Microsoft Azure Machine Learning Studio, so I don't have to search for the algorithms and all the relevant libraries because I can see them directly on the designer just by dragging and dropping. Though there's a bit of work during data cleansing, that's normal and can't be avoided. At least it's easy to find the relevant algorithm, apply that algorithm to the data, then get the desired output through Microsoft Azure Machine Learning Studio. I also like the API feature of the solution which is readily available for me to expose the output to any consuming application, so that takes out a lot of headache. Otherwise, I have to have a developer who knows the API, and I have to have an API app, so all that is completely taken care of by the Microsoft Azure Machine Learning Studio designer. With the solution, I can concentrate on how to improve the data quality to get quality recommendations, so this lets me concentrate on my job rather than focusing on the regular development of APIs or the pipelines, in particular, the data pipelines pulling the data from other sources. All the data is taken care of and you can also concentrate on other required auxiliary activities rather than just concentrating on machine learning."
"Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints."
 

Cons

"The solution is stable, but it is quite slow. Maybe my data is too large, but I think that Google could improve Vertex AI's training time."
"Google Vertex AI is good in machine learning and AI, but it lacks optimization."
"Both major systems, Azure and Google, are not yet stabilized, especially their customer support."
"It would be beneficial to have certain features included in the future, such as image generators and text-to-speech solutions."
"I've noticed that using chat activity often presents a broader range of options and insights for a well-constructed question. Improving the knowledge base could be a key aspect for enhancement—expanding the information sources to enhance the generation process."
"The tool's documentation is not good. It is hard."
"I'm not sure if I have suggestions for improvement."
"I think the technical documentation is not readily available in the tool."
"As for the areas for improvement in Microsoft Azure Machine Learning Studio, I've provided feedback to Microsoft. My company is a Gold Partner of Microsoft, so I provided my feedback in another forum. Right now, it is the number of algorithms available in the designer that has to be improved, though I'm sure Microsoft does it regularly. When you take a use case approach, Microsoft has done that in a lot of places, but not on the Microsoft Azure Machine Learning Studio designer. When I say use case basis, I meant recommending a product or recommending similar products, so if Microsoft can list out use cases and give me a template, it will save me a lot of time and a lot of work because I don't have to scratch my head on which algorithm is better, and I can go with what's recommended by Microsoft. I'm sure that isn't a big task for the Microsoft team who must have seen thousands of use cases already, so out of that experience if the team can come up with a standard template, I'm sure it'll help a lot of organizations cut down on the development time, as well as going with the best industry-standard algorithms rather than experimenting with mine. What I'd like to see in the next version of Microsoft Azure Machine Learning Studio, apart from the use case template, is the improvement of the availability of libraries. Microsoft should also upgrade the Python versions because the old version of Python is still supported and it takes time for Microsoft to upgrade the support for Python. The pace of upgrading Python versions of Microsoft Azure Machine Learning Studio and making those libraries available should be sped up or increased."
"One problem I experience is that switching between multiple accounts can be difficult. I don't think there are any major issues. Mostly, the biggest challenge is to identify business solutions to this. The tool should keep on updating new algorithms and not stay static."
"Performance is very poor."
"Operability with R could be improved."
"The price of the solution has room for improvement."
"One area where Azure Machine Learning Studio could improve is its user interface structure."
"Using the solution requires some specific learning which can take some time."
"Improvement in integration is crucial, and it'll be interesting to see how it develops, especially with SAP's move towards cloud-based solutions like SAP Rise and its collaboration with hyper scalers like AWS. Integrating SAP with hyperscaler machine learning solutions could simplify operations, although SAP's environment is complex. SAP has initiated deals with AWS for this purpose, but I'm not as familiar with Microsoft Azure Machine Learning Studio's involvement."
 

Pricing and Cost Advice

"The Versa AI offers attractive pricing. With this pricing structure, I can leverage various opportunities to bring value to my business. It's a positive aspect worth considering."
"I think almost every tool offers a decent discount. In terms of credits or other stuff, every cloud provider provides a good number of incentives to onboard new clients."
"The price structure is very clear"
"The solution's pricing is moderate."
"The platform's price is low."
"To use MLS is fairly cheap. Even the paid account is something like $20/month, unless you are provisioning large numbers of VMs for a Hadoop cluster. The main MS makes money with this solution is forcing the user to deploy their model on REST API, and being charged each time the API is accessed. There are several pricing tiers for the API. If you do not use the API, then value of MLS is to create rapid experiments ($20/month). The resulting model is not exportable to use, thus you’ll have to recreate the algorithms in either R or Python, which is what I did. MLS results gave me a direction to work with, the actual work is mostly done in R and Python outside of MLS."
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
"There is a license required for this solution."
"I used the free student license for a few months to operate the solution, but I'll have to pay for it if I want to do more now."
"The product's pricing is reasonable."
"From a developer's perspective, I find the price of this solution high."
"The licensing cost is very cheap. It's less than $50 a month."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
847,862 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
13%
Financial Services Firm
13%
Manufacturing Company
9%
Retailer
7%
Financial Services Firm
13%
Computer Software Company
11%
Manufacturing Company
10%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Google Vertex AI?
We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for trai...
What is your experience regarding pricing and costs for Google Vertex AI?
They have different pricing models like pay-as-you-go or subscription model, and total cost of ownership. It is comparatively cheaper than Azure.
What needs improvement with Google Vertex AI?
I'm not sure if I have suggestions for improvement. Based on my comparison between the two, Vertex has various additional functionalities that Azure doesn't provide.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
Pricing is considered to be top-segment and should be improved. I rate the pricing as three or four on a scale of one to ten in terms of affordability.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Information Not Available
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Google Vertex AI vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: March 2025.
847,862 professionals have used our research since 2012.