Try our new research platform with insights from 80,000+ expert users

Google Vertex AI vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Jan 12, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Vertex AI
Ranking in AI Development Platforms
2nd
Average Rating
8.4
Reviews Sentiment
7.4
Number of Reviews
10
Ranking in other categories
AI Infrastructure (1st)
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
3rd
Average Rating
7.6
Reviews Sentiment
7.0
Number of Reviews
60
Ranking in other categories
Data Science Platforms (4th)
 

Mindshare comparison

As of January 2025, in the AI Development Platforms category, the mindshare of Google Vertex AI is 18.8%, up from 17.9% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 9.4%, down from 16.0% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Serge Dahdouh - PeerSpot reviewer
A user-friendly platform that automatizes machine learning techniques with minimal effort
We work with clients who request the implementation of a certain document into a chatbot. Because of the limited knowledge of AI, our task is to link that file to the ML and provide a platform that can work as a customer service. We previously used LangChain Phython, but now it is done through Vertex AI.
HéctorGiorgiutti - PeerSpot reviewer
Requires minimal maintenance, is scalable, and stable
The initial setup depends on the developer's knowledge of machine learning models as to whether it is easy or difficult. With a good understanding of these models, then we can get to work quickly in the environment. With 20 years of experience in IT, making applications on legacy platforms and non-web platforms, I have found that Azure has a very good implementation. The platform is so comprehensive that it doesn't matter what kind of work we do, we can find the tools needed to get the job done. In comparison to what I was doing five years ago, Azure is a great platform and I really enjoy working with it. We should allocate up to 12 percent of our project time to deployment. Depending on the complexity of the solution, we should expect to spend more time on deployment.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable features of the solution are that it is quite flexible, and some of the services are almost low-code, with no-code services, so it gives agents flexibility to build the use cases according to the operational needs."
"Vertex comes with inbuilt integration with GCP for data storage."
"Vertex AI possesses multiple libraries, so it eliminates the need for extensive coding."
"The monitoring feature is a true life-saver for data scientists. I give it a ten out of ten."
"The most valuable feature we've found is the model garden, which allows us to deploy and use various models through the provided endpoints easily."
"It provides the most valuable external analytics."
"Google Vertex AI is an out-of-the-box and very easy-to-use solution."
"The integration of AutoML features streamlines our machine-learning workflows."
"The solution is integrated with our Microsoft Azure tenant, and we don't have to go anywhere else outside the tenant."
"The solution is really scalable."
"It's easy to use."
"The UI is very user-friendly and that AI is easy to use."
"MLS allows me to set up data experiments by running through various regression and other machine learning algorithms, with different data cleaning and treatment tools. All of this can be achieved via drag and drop, and a few clicks of the mouse."
"Their support is helpful."
"I like that it's totally easy to use. They have an AutoML solution, and their machine learning model is highly accurate. They also have a feature that can explain the machine learning model. This makes it easy for me to understand that model."
"The integration with Azure services enhances workflow and meets my expectations."
 

Cons

"I believe that Vertex AI is a robust platform, but its effectiveness depends significantly on the domain knowledge of the developer using it. While Vertex AI does offer support through the console UI in the Google Cloud environment, it is better suited for technical members who have a deeper understanding of machine learning concepts. The platform may be challenging for business process developers (BPDUs) who lack extensive technical knowledge, as it involves intricate customization and handling numerous parameters. Effectively utilizing Vertex AI requires not only familiarity with machine learning frameworks like TensorFlow or PyTorch but also a proficiency in Python programming. The complexity of these requirements might pose challenges for less technically oriented users, making it crucial to have a solid foundation in both machine learning principles and Python coding to extract the full value from Vertex AI. It would be beneficial to have a streamlined process where we can leverage the capabilities of Vertex AI directly through the BigQuery UI. This could involve functionalities such as creating machine learning models within the BigQuery UI, providing a more user-friendly and integrated experience. This would allow users to access and analyze data from BigQuery while simultaneously utilizing Vertex AI to build machine learning models, fostering a more cohesive and efficient workflow."
"I'm not sure if I have suggestions for improvement."
"It would be beneficial to have certain features included in the future, such as image generators and text-to-speech solutions."
"I think the technical documentation is not readily available in the tool."
"The solution is stable, but it is quite slow. Maybe my data is too large, but I think that Google could improve Vertex AI's training time."
"The tool's documentation is not good. It is hard."
"Google Vertex AI is good in machine learning and AI, but it lacks optimization."
"I've noticed that using chat activity often presents a broader range of options and insights for a well-constructed question. Improving the knowledge base could be a key aspect for enhancement—expanding the information sources to enhance the generation process."
"I think they should improve two things. They should make their user interface more user-friendly. Integration could also be better. Because Microsoft Machine Learning is a Microsoft product, it's fully integrated with Microsoft Azure but not fully supported for other platforms like IBM or AWS or something else."
"The solution cannot connect to private block storage."
"In future releases, I would like to see better integration with Power BI within Microsoft Azure Machine Learning Studio."
"The solution's initial setup process is complicated."
"The high price of the product is an area of concern where improvements are required."
"The price could be improved."
"As for the areas for improvement in Microsoft Azure Machine Learning Studio, I've provided feedback to Microsoft. My company is a Gold Partner of Microsoft, so I provided my feedback in another forum. Right now, it is the number of algorithms available in the designer that has to be improved, though I'm sure Microsoft does it regularly. When you take a use case approach, Microsoft has done that in a lot of places, but not on the Microsoft Azure Machine Learning Studio designer. When I say use case basis, I meant recommending a product or recommending similar products, so if Microsoft can list out use cases and give me a template, it will save me a lot of time and a lot of work because I don't have to scratch my head on which algorithm is better, and I can go with what's recommended by Microsoft. I'm sure that isn't a big task for the Microsoft team who must have seen thousands of use cases already, so out of that experience if the team can come up with a standard template, I'm sure it'll help a lot of organizations cut down on the development time, as well as going with the best industry-standard algorithms rather than experimenting with mine. What I'd like to see in the next version of Microsoft Azure Machine Learning Studio, apart from the use case template, is the improvement of the availability of libraries. Microsoft should also upgrade the Python versions because the old version of Python is still supported and it takes time for Microsoft to upgrade the support for Python. The pace of upgrading Python versions of Microsoft Azure Machine Learning Studio and making those libraries available should be sped up or increased."
"The platform's integration feature could be better."
 

Pricing and Cost Advice

"The Versa AI offers attractive pricing. With this pricing structure, I can leverage various opportunities to bring value to my business. It's a positive aspect worth considering."
"I think almost every tool offers a decent discount. In terms of credits or other stuff, every cloud provider provides a good number of incentives to onboard new clients."
"The solution's pricing is moderate."
"The price structure is very clear"
"It is less expensive than one of its competitors."
"I used the free student license for a few months to operate the solution, but I'll have to pay for it if I want to do more now."
"The solution operates on a pay-per-use model."
"The product is not that expensive."
"I rate the product price as a nine on a scale of one to ten, where ten means it is very expensive."
"On a scale from one to ten, with ten being overpriced, I would rate the price of this solution at six."
"My team didn't deal with the licensing for Microsoft Azure Machine Learning Studio, so I'm unable to comment on pricing, but the money that was spent on the tool was worth it."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
831,071 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
13%
Computer Software Company
13%
Manufacturing Company
9%
Retailer
7%
Financial Services Firm
12%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Google Vertex AI?
We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for trai...
What is your experience regarding pricing and costs for Google Vertex AI?
They have different pricing models like pay-as-you-go or subscription model, and total cost of ownership. It is comparatively cheaper than Azure.
What needs improvement with Google Vertex AI?
I'm not sure if I have suggestions for improvement. Based on my comparison between the two, Vertex has various additional functionalities that Azure doesn't provide.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
Pricing is considered to be top-segment and should be improved. I rate the pricing as three or four on a scale of one to ten in terms of affordability.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Learn More

 

Overview

 

Sample Customers

Information Not Available
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Google Vertex AI vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: December 2024.
831,071 professionals have used our research since 2012.