Try our new research platform with insights from 80,000+ expert users

Microsoft Azure Machine Learning Studio vs TensorFlow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Jan 12, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
3rd
Average Rating
7.6
Reviews Sentiment
7.0
Number of Reviews
60
Ranking in other categories
Data Science Platforms (4th)
TensorFlow
Ranking in AI Development Platforms
6th
Average Rating
8.8
Reviews Sentiment
7.4
Number of Reviews
20
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2025, in the AI Development Platforms category, the mindshare of Microsoft Azure Machine Learning Studio is 9.4%, down from 16.0% compared to the previous year. The mindshare of TensorFlow is 4.5%, down from 8.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

HéctorGiorgiutti - PeerSpot reviewer
Requires minimal maintenance, is scalable, and stable
The initial setup depends on the developer's knowledge of machine learning models as to whether it is easy or difficult. With a good understanding of these models, then we can get to work quickly in the environment. With 20 years of experience in IT, making applications on legacy platforms and non-web platforms, I have found that Azure has a very good implementation. The platform is so comprehensive that it doesn't matter what kind of work we do, we can find the tools needed to get the job done. In comparison to what I was doing five years ago, Azure is a great platform and I really enjoy working with it. We should allocate up to 12 percent of our project time to deployment. Depending on the complexity of the solution, we should expect to spend more time on deployment.
Ashish Upadhyay - PeerSpot reviewer
A robust tools for model visualization and debugging with superior scalability and stability, and an intuitive user-friendly interface
The one feature we find most valuable at our company is its robust and flexible machine-learning capabilities. It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions. The ability to develop and fine-tune models, such as risk assessment for detection and market protection, as well as the creation of recommendation systems, is paramount. This versatility extends to providing personalized identity-relevant applications for our enterprise clients, delivering valuable insights to the market. Its exceptional support for deep learning and its efficient resource utilization enable us to undertake complex financial and data analyses. The flexibility it provides is crucial for meeting industrial requirements and crafting solutions tailored to our client's specific needs.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable feature of this solution is the ability to use all of the cognitive services, prebuilt from Azure."
"Auto email and studio are great features."
"The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem."
"Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints."
"What I like best about Microsoft Azure Machine Learning Studio is that it's a straightforward tool and it's easy to use. Another valuable feature of the tool is AutoML which lets you get better metrics to train the model right and with good accuracy. The AutoML feature allows you to simply put in your data, and it'll pre-process and create a more accurate model for you. You don't have to do anything because AutoML in Microsoft Azure Machine Learning Studio will take care of it."
"Split dataset, variety of algorithms, visualizing the data, and drag and drop capability are the features I appreciate most."
"The UI is very user-friendly and that AI is easy to use."
"The solution is scalable."
"I would rate the solution an eight out of ten. I am not a developer but more of an account manager. I can find what I want with TensorFlow. I haven’t contacted technical support for any issues. Since TensorFlow is vastly documented on the internet, I usually find some good websites where people exchange their views about the solution and apply that."
"It's got quite a big community, which is useful."
"It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions."
"It is easy to use and learn."
"The available documentation is extensive and helpful."
"What made TensorFlow so appealing to us is that you could run it on a cluster computer and on a mobile device."
"It provides us with 35 features like patch normalization layers, and it is easy to implement using the Kras library when the Kaspersky flow is running behind it."
"Our clients were not aware they were using TensorFlow, so that aspect was transparent. I think we personally chose TensorFlow because it provided us with more of the end-to-end package that you can use for all the steps regarding billing and our models. So basically data processing, training the model, evaluating the model, updating the model, deploying the model and all of these steps without having to change to a new environment."
 

Cons

"As for the areas for improvement in Microsoft Azure Machine Learning Studio, I've provided feedback to Microsoft. My company is a Gold Partner of Microsoft, so I provided my feedback in another forum. Right now, it is the number of algorithms available in the designer that has to be improved, though I'm sure Microsoft does it regularly. When you take a use case approach, Microsoft has done that in a lot of places, but not on the Microsoft Azure Machine Learning Studio designer. When I say use case basis, I meant recommending a product or recommending similar products, so if Microsoft can list out use cases and give me a template, it will save me a lot of time and a lot of work because I don't have to scratch my head on which algorithm is better, and I can go with what's recommended by Microsoft. I'm sure that isn't a big task for the Microsoft team who must have seen thousands of use cases already, so out of that experience if the team can come up with a standard template, I'm sure it'll help a lot of organizations cut down on the development time, as well as going with the best industry-standard algorithms rather than experimenting with mine. What I'd like to see in the next version of Microsoft Azure Machine Learning Studio, apart from the use case template, is the improvement of the availability of libraries. Microsoft should also upgrade the Python versions because the old version of Python is still supported and it takes time for Microsoft to upgrade the support for Python. The pace of upgrading Python versions of Microsoft Azure Machine Learning Studio and making those libraries available should be sped up or increased."
"I think it should be made cheaper for certain people…It may appear costlier for those who don't consider time important."
"The AutoML feature is very basic and they should improve it by using a more robust algorithm."
"Improvement in integration is crucial, and it'll be interesting to see how it develops, especially with SAP's move towards cloud-based solutions like SAP Rise and its collaboration with hyper scalers like AWS. Integrating SAP with hyperscaler machine learning solutions could simplify operations, although SAP's environment is complex. SAP has initiated deals with AWS for this purpose, but I'm not as familiar with Microsoft Azure Machine Learning Studio's involvement."
"The data preparation capabilities need to be improved."
"When you use different Microsoft tools, there are different pricing metrics. It doesn't make sense. The pricing metrics are quire difficult to understand and should be either clarified or simplified. It would help us sell the solution to customers."
"Operability with R could be improved."
"I cannot comment on specific improvements yet as we are still exploring and need more time to identify the areas that require enhancements."
"It would be cool if TensorFlow could make it easier for companies like us to program for running it across different hyperscalers."
"There are a lot of problems, such as integrating our custom code. In my experience model tuning has been a bit difficult to edit and tune the graph model for best performance. We have to go into the model but we do not have a model viewer for quick access."
"TensorFlow deep learning takes a lot of computation power. The more systems you can use, the easier it is. That's a good ability, if you can make a system run immediately at the same time on the same task, it's much faster rather than you having one system running which is slower. Running systems in parallel is a complex situation, but it can improve. There is a lot of work involved."
"I would love to have a user interface like a programming interface. You need to have a set of menus where you can put things together in a graphical interface. The complete automation of the integration of the modules would also be interesting. It’s more like plumbing as opposed to a fully automated environment."
"JavaScript is a different thing and all the websites and web apps and all the mobile apps are built-in JavaScript. JavaScript is the core of that. However, TensorFlow is like a machine learning item. What can be improved with TensorFlow is how it can mix in how the JavaScript developers can use TensorFlow."
"Enhancements could include increasing use cases and improving the accuracy of previously built models in TensorFlow. For instance, when we run certain models, the computing power of laptops becomes high."
"For newcomers to the field, the learning curve can be steep, often requiring about a year of dedicated effort."
"The process of creating models could be more user-friendly."
 

Pricing and Cost Advice

"I rate the solution's pricing a four on a scale of one to ten, where one is cheap, and ten is expensive."
"The platform's price is low."
"Last year, we paid 60,000 for Microsoft Azure Machine Learning Studio in our department."
"It is less expensive than one of its competitors."
"The solution operates on a pay-per-use model."
"There is a lack of certainty with the solution's pricing."
"My team didn't deal with the licensing for Microsoft Azure Machine Learning Studio, so I'm unable to comment on pricing, but the money that was spent on the tool was worth it."
"I rate the product price as a nine on a scale of one to ten, where ten means it is very expensive."
"I think for learners to deploy a project, you can actually use TensorFlow for free. It's just amazing to have an open-source platform like TensorFlow to deploy your own project. Here in Russia no one really cares about licenses, as it is totally open source and free. My clients in the United States were also pleased to learn when they enquired, that licensing is free."
"The solution is free."
"It is an open-source solution, so anyone can use it free of charge."
"I did not require a license for this solution. It a free open-source solution."
"I am using the open-source version of TensorFlow and it is free."
"We are using the free version."
"TensorFlow is free."
"I rate TensorFlow's pricing a five out of ten."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
831,265 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
13%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
7%
Manufacturing Company
14%
Computer Software Company
12%
University
10%
Educational Organization
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
Pricing is considered to be top-segment and should be improved. I rate the pricing as three or four on a scale of one to ten in terms of affordability.
What do you like most about TensorFlow?
It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions.
What is your experience regarding pricing and costs for TensorFlow?
I am not familiar with the pricing setup cost and licensing.
What needs improvement with TensorFlow?
Providing more control by allowing users to build custom functions would make TensorFlow a better option. It currently offers inbuilt functions, however, having the ability to implement custom libr...
 

Also Known As

Azure Machine Learning, MS Azure Machine Learning Studio
No data available
 

Overview

 

Sample Customers

Walgreens Boots Alliance, Schneider Electric, BP
Airbnb, NVIDIA, Twitter, Google, Dropbox, Intel, SAP, eBay, Uber, Coca-Cola, Qualcomm
Find out what your peers are saying about Microsoft Azure Machine Learning Studio vs. TensorFlow and other solutions. Updated: January 2025.
831,265 professionals have used our research since 2012.