Try our new research platform with insights from 80,000+ expert users

Azure OpenAI vs TensorFlow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure OpenAI
Ranking in AI Development Platforms
1st
Average Rating
7.8
Reviews Sentiment
6.7
Number of Reviews
33
Ranking in other categories
No ranking in other categories
TensorFlow
Ranking in AI Development Platforms
6th
Average Rating
8.8
Reviews Sentiment
7.4
Number of Reviews
20
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of April 2025, in the AI Development Platforms category, the mindshare of Azure OpenAI is 12.9%, down from 21.1% compared to the previous year. The mindshare of TensorFlow is 3.8%, down from 7.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Viswanath Barenkala - PeerSpot reviewer
Offers tools to moderate generated content and guidance to safely design applications, but it is not consistently accessible
Instead of a feature, the GPT-4 model has been most beneficial for automating tasks. We transitioned from GPT-3.5 to GPT-4 and actively use it. However, we face limitations due to geographic availability, subscription constraints, and rate limiting, which we are currently negotiating and working towards optimizing. While we haven't formally benchmarked Azure OpenAI's language understanding against industry standards, we find it performs well about 70-80% of the time. Occasionally, we need to refine our queries and adapt our systems accordingly to improve accuracy and effectiveness.
Ashish Upadhyay - PeerSpot reviewer
A robust tools for model visualization and debugging with superior scalability and stability, and an intuitive user-friendly interface
The one feature we find most valuable at our company is its robust and flexible machine-learning capabilities. It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions. The ability to develop and fine-tune models, such as risk assessment for detection and market protection, as well as the creation of recommendation systems, is paramount. This versatility extends to providing personalized identity-relevant applications for our enterprise clients, delivering valuable insights to the market. Its exceptional support for deep learning and its efficient resource utilization enable us to undertake complex financial and data analyses. The flexibility it provides is crucial for meeting industrial requirements and crafting solutions tailored to our client's specific needs.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It's very powerful. It allows users to query our documents using natural language and receive answers in the same way. This makes our product information much more accessible than traditional keyword-based search."
"Azure OpenAI is very easy to use instead of AWS services."
"Azure OpenAI is useful for benchmarking products."
"We can use the solution to implement our tasks and models quickly."
"Its versatility makes it incredibly useful for technical problem-solving, content creation, data analytics, and more."
"It is easy to integrate and develop a solution. Most customers are concerned about the security of their data and how cost-effective it is. We have developed some methodologies so that our customers will not be charged too much for these OpenAI services but will still get the same kind of performance and results. It's all developed on Azure, so customers also see its benefit."
"The AI search functionality is particularly effective, as it creates summaries from data."
"The product's initial setup phase was pretty easy."
"Our clients were not aware they were using TensorFlow, so that aspect was transparent. I think we personally chose TensorFlow because it provided us with more of the end-to-end package that you can use for all the steps regarding billing and our models. So basically data processing, training the model, evaluating the model, updating the model, deploying the model and all of these steps without having to change to a new environment."
"TensorFlow provides Insights into both data and machine learning strategies."
"Edge computing has some limited resources but TensorFlow has been improving in its features. It is a great tool for developers."
"TensorFlow is a framework that makes it really easy to use for deep learning."
"The most valuable feature of TensorFlow is deep learning. It is the best tool for deep learning in the market."
"It is open-source, and it is being worked on all the time. You don't have to pay all the big bucks like Azure and Databricks. You can just use your local machine with the open-source TensorFlow and create pretty good models."
"I would rate the solution an eight out of ten. I am not a developer but more of an account manager. I can find what I want with TensorFlow. I haven’t contacted technical support for any issues. Since TensorFlow is vastly documented on the internet, I usually find some good websites where people exchange their views about the solution and apply that."
"It's got quite a big community, which is useful."
 

Cons

"Deployment was slightly complex for me to understand."
"The solution's response is a bit slow sometimes."
"I faced one issue with Azure OpenAI: My customer wanted more clarity on the pricing. They were not able to get proper answers from the documentation or the pricing calculator. I suggest that Microsoft maintain standardization in the pricing details published in the documentation and the pricing calculator."
"Azure needs to work on its own model development and improve the integration of voice-to-text services, particularly for right-to-left languages such as Arabic and Urdu. The accuracy in these languages requires improvement."
"Azure OpenAI should use more specific sources like academic articles because sometimes the source can't be found."
"One major drawback of Azure OpenAI is its availability, as it's not consistently accessible for effective use."
"There is room for improvement in their support services."
"The product must improve its dashboards."
"Enhancements could include increasing use cases and improving the accuracy of previously built models in TensorFlow. For instance, when we run certain models, the computing power of laptops becomes high."
"I know this is out of the scope of TensorFlow, however, every time I've sent a request, I had to renew the model into RAM and they didn't make that prediction or inference. This makes the point for the request that much longer. If they could provide anything to help in this part, it will be very great."
"The process of creating models could be more user-friendly."
"In terms of improvement, we always look for ways they can optimize the model, accelerate the speed and the accuracy, and how can we optimize with our different techniques. There are various techniques available in TensorFlow. Maintaining accuracy is an area they should work on."
"TensorFlow deep learning takes a lot of computation power. The more systems you can use, the easier it is. That's a good ability, if you can make a system run immediately at the same time on the same task, it's much faster rather than you having one system running which is slower. Running systems in parallel is a complex situation, but it can improve. There is a lot of work involved."
"For newcomers to the field, the learning curve can be steep, often requiring about a year of dedicated effort."
"There are a lot of problems, such as integrating our custom code. In my experience model tuning has been a bit difficult to edit and tune the graph model for best performance. We have to go into the model but we do not have a model viewer for quick access."
"The solution is hard to integrate with the GPUs."
 

Pricing and Cost Advice

"If you consider the long-term aspect of any project, Azure OpenAI is a costly solution."
"The solution's pricing depends on the services you will deploy."
"Regarding pricing and licensing, it's a bit complex due to the minimum purchase requirement for PTO units. We're evaluating the best approach between PTE and pay-as-you-go models. Our organization is cautious about committing to PTE due to the fixed bandwidth reservation, while pay-as-you-go doesn't offer enough flexibility. We're discussing these matters with legal teams to ensure compliance and data security."
"The platform offers a flexible pricing model which depends on the features and capabilities we utilize."
"The cost is pretty high. Even by US standards, you would find it high."
"Azure OpenAI is a bit more expensive than other services."
"While the product meets our business requirements well, I consider it relatively expensive, especially for individual users like myself."
"The pricing is acceptable, and it's delivering good value for the results and outcomes we need."
"I rate TensorFlow's pricing a five out of ten."
"It is an open-source solution, so anyone can use it free of charge."
"I think for learners to deploy a project, you can actually use TensorFlow for free. It's just amazing to have an open-source platform like TensorFlow to deploy your own project. Here in Russia no one really cares about licenses, as it is totally open source and free. My clients in the United States were also pleased to learn when they enquired, that licensing is free."
"It is open-source software. You don't have to pay all the big bucks like Azure and Databricks."
"I did not require a license for this solution. It a free open-source solution."
"I am using the open-source version of TensorFlow and it is free."
"The solution is free."
"We are using the free version."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
845,040 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
15%
Computer Software Company
13%
Manufacturing Company
11%
Government
6%
Manufacturing Company
14%
Computer Software Company
13%
University
9%
Educational Organization
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Azure OpenAI?
The product is easy to integrate with our IT workflow.
What is your experience regarding pricing and costs for Azure OpenAI?
The pricing is very good for handling various kinds of jobs. While small jobs are manageable, more complex jobs require a higher model, which is a bit challenging.
What needs improvement with Azure OpenAI?
Maybe with the next release, the response will be more precise and more human-like.
What do you like most about TensorFlow?
It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions.
What is your experience regarding pricing and costs for TensorFlow?
I am not familiar with the pricing setup cost and licensing.
What needs improvement with TensorFlow?
Providing more control by allowing users to build custom functions would make TensorFlow a better option. It currently offers inbuilt functions, however, having the ability to implement custom libr...
 

Overview

 

Sample Customers

Information Not Available
Airbnb, NVIDIA, Twitter, Google, Dropbox, Intel, SAP, eBay, Uber, Coca-Cola, Qualcomm
Find out what your peers are saying about Azure OpenAI vs. TensorFlow and other solutions. Updated: March 2025.
845,040 professionals have used our research since 2012.