Try our new research platform with insights from 80,000+ expert users

Hugging Face vs TensorFlow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Hugging Face
Ranking in AI Development Platforms
2nd
Average Rating
8.2
Reviews Sentiment
7.2
Number of Reviews
14
Ranking in other categories
No ranking in other categories
TensorFlow
Ranking in AI Development Platforms
8th
Average Rating
8.8
Reviews Sentiment
7.4
Number of Reviews
19
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of February 2026, in the AI Development Platforms category, the mindshare of Hugging Face is 7.2%, down from 13.2% compared to the previous year. The mindshare of TensorFlow is 5.4%, up from 3.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Hugging Face7.2%
TensorFlow5.4%
Other87.4%
AI Development Platforms
 

Featured Reviews

Mihir Jadhav - PeerSpot reviewer
Software Engineer at Futurescape Technologies
Integration of open-source models and deployment in cloud apps has drastically improved productivity
The best features Hugging Face offers are Transformers and Spaces to deploy the app in clicks. What I like most about Transformers and Spaces is the ease of use. Hugging Face is like a Git repository, so it is very helpful and easy to use. Hugging Face has positively impacted my organization because we can deploy open-source applications for testing on Spaces, and one of the main things is the models that it provides and the number of open-source models to compare with. The main part is that it offers inference as well for free for many of the models, so we can use it directly in our applications with a few lines of code.
TJ
Owner at Go knowledge
Has good stability, but the process of creating models could be more user-friendly
The platform integrates well with other tools, especially Python, which we use to create models. These models can be deployed on mobile devices, which perfectly suits our requirements. It supports our AI-driven initiatives very well by producing AI models, which is its primary function. I recommend it for those seeking specialized scripting. However, it's important to consider other options as well. It is better suited for specialists in the field and is less user-friendly than general tools like Excel. I rate it overall at six out of ten. While it is a powerful tool, other software options are slightly simpler for training models.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"What I find the most valuable about Hugging Face is that I can check all the models on it and see which ones have the best performance without using another platform."
"The solution is easy to use compared to other frameworks like PyTorch and TensorFlow."
"The most valuable features are the inference APIs as it takes me a long time to run inferences on my local machine."
"I would rate this product nine out of ten."
"Hugging Face provides open-source models, making it the best open-source and reliable solution."
"I appreciate the versatility and the fact that it has generalized many models."
"Overall, the platform is excellent."
"We have seen improved productivity and time saved from using Hugging Face; for a task that would have taken six hours, it saved us five hours, and we completed it in one hour with the plug-and-play integration of inference and everything, using the few lines of code that Hugging Face provides."
"TensorFlow improves my organization because our clients get a lot of investment from their investors and we are progressively improving the products. Every six months we release new features."
"It provides us with 35 features like patch normalization layers, and it is easy to implement using the Kras library when the Kaspersky flow is running behind it."
"TensorFlow is an efficient product for building neural networks."
"Edge computing has some limited resources but TensorFlow has been improving in its features. It is a great tool for developers."
"The most valuable features are the frameworks and the functionality to work with different data, even when we have a certain quantity of data flowing."
"TensorFlow provides Insights into both data and machine learning strategies."
"It is open-source, and it is being worked on all the time. You don't have to pay all the big bucks like Azure and Databricks. You can just use your local machine with the open-source TensorFlow and create pretty good models."
"Google is behind TensorFlow, and they provide excellent documentation. It's very thorough and very helpful."
 

Cons

"Access to the models and datasets could be improved. Many interesting ones are restricted."
"It can incorporate AI into its services."
"The solution must provide an efficient LLM."
"I've worked on three projects using Hugging Face, and only once did we encounter a problem with the code. We had to use another open-source embedding from OpenAI to resolve it. Our team has three members: me, my colleague, and a team leader. We looked at the problem and resolved it."
"Most people upload their pre-trained models on Hugging Face, but more details should be added about the models."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging."
"Initially, I faced issues with the solution's configuration."
"TensorFlow deep learning takes a lot of computation power. The more systems you can use, the easier it is. That's a good ability, if you can make a system run immediately at the same time on the same task, it's much faster rather than you having one system running which is slower. Running systems in parallel is a complex situation, but it can improve. There is a lot of work involved."
"However, if I want to change just one thing in the implementation of TensorFlow functions I have to copy everything that they wrote and I change it manually if indeed it can be amended. This is really hard as it's written in C++ and has a lot of complications."
"I know this is out of the scope of TensorFlow, however, every time I've sent a request, I had to renew the model into RAM and they didn't make that prediction or inference. This makes the point for the request that much longer. If they could provide anything to help in this part, it will be very great."
"TensorFlow Lite only outputs to C."
"The process of creating models could be more user-friendly."
"It would be nice if the solution was in Hungarian. I would like more Hungarian NAT models."
"I would love to have a user interface like a programming interface. You need to have a set of menus where you can put things together in a graphical interface. The complete automation of the integration of the modules would also be interesting. It’s more like plumbing as opposed to a fully automated environment."
"It would be cool if TensorFlow could make it easier for companies like us to program for running it across different hyperscalers."
 

Pricing and Cost Advice

"So, it's requires expensive machines to open services or open LLM models."
"We do not have to pay for the product."
"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"Hugging Face is an open-source solution."
"The solution is open source."
"We are using the free version."
"I think for learners to deploy a project, you can actually use TensorFlow for free. It's just amazing to have an open-source platform like TensorFlow to deploy your own project. Here in Russia no one really cares about licenses, as it is totally open source and free. My clients in the United States were also pleased to learn when they enquired, that licensing is free."
"I rate TensorFlow's pricing a five out of ten."
"It is open-source software. You don't have to pay all the big bucks like Azure and Databricks."
"I did not require a license for this solution. It a free open-source solution."
"The solution is free."
"I am using the open-source version of TensorFlow and it is free."
"TensorFlow is free."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
882,594 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
University
10%
Comms Service Provider
10%
Manufacturing Company
10%
Financial Services Firm
10%
Manufacturing Company
15%
Comms Service Provider
9%
University
9%
Financial Services Firm
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise3
By reviewers
Company SizeCount
Small Business12
Midsize Enterprise3
Large Enterprise3
 

Questions from the Community

What needs improvement with Hugging Face?
Everything is pretty much sorted in Hugging Face, but it could be improved if there was an AI chatbot or an AI assistant in Hugging Face platform itself, which can guide you through the whole platf...
What is your primary use case for Hugging Face?
My main use case for Hugging Face is to download open-source models and train on a local machine. We use Hugging Face Transformers for simple and fast integration in our applications and AI-based a...
What advice do you have for others considering Hugging Face?
We have seen improved productivity and time saved from using Hugging Face; for a task that would have taken six hours, it saved us five hours, and we completed it in one hour with the plug-and-play...
What is your experience regarding pricing and costs for TensorFlow?
I am not familiar with the pricing setup cost and licensing.
What needs improvement with TensorFlow?
Providing more control by allowing users to build custom functions would make TensorFlow a better option. It currently offers inbuilt functions, however, having the ability to implement custom libr...
What is your primary use case for TensorFlow?
I've used TensorFlow for image classification tasks, object detection tasks, and OCR.
 

Comparisons

 

Overview

 

Sample Customers

Information Not Available
Airbnb, NVIDIA, Twitter, Google, Dropbox, Intel, SAP, eBay, Uber, Coca-Cola, Qualcomm
Find out what your peers are saying about Hugging Face vs. TensorFlow and other solutions. Updated: February 2026.
882,594 professionals have used our research since 2012.