Try our new research platform with insights from 80,000+ expert users

Hugging Face vs TensorFlow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Hugging Face
Ranking in AI Development Platforms
2nd
Average Rating
8.2
Reviews Sentiment
7.2
Number of Reviews
14
Ranking in other categories
No ranking in other categories
TensorFlow
Ranking in AI Development Platforms
8th
Average Rating
8.8
Reviews Sentiment
7.4
Number of Reviews
19
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2026, in the AI Development Platforms category, the mindshare of Hugging Face is 7.9%, down from 12.8% compared to the previous year. The mindshare of TensorFlow is 5.8%, up from 4.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Hugging Face7.9%
TensorFlow5.8%
Other86.3%
AI Development Platforms
 

Featured Reviews

SwaminathanSubramanian - PeerSpot reviewer
Director/Enterprise Solutions Architect, Technology Advisor at Kyndryl
Versatility empowers AI concept development despite the multi-GPU challenge
Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently. Organizations are apprehensive about investing in multi-GPU setups. Additionally, data cleanup is a challenge that needs to be resolved, as data must be mature and pristine.
TJ
Owner at Go knowledge
Has good stability, but the process of creating models could be more user-friendly
The platform integrates well with other tools, especially Python, which we use to create models. These models can be deployed on mobile devices, which perfectly suits our requirements. It supports our AI-driven initiatives very well by producing AI models, which is its primary function. I recommend it for those seeking specialized scripting. However, it's important to consider other options as well. It is better suited for specialists in the field and is less user-friendly than general tools like Excel. I rate it overall at six out of ten. While it is a powerful tool, other software options are slightly simpler for training models.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Overall, the platform is excellent."
"I like that Hugging Face is versatile in the way it has been developed."
"My preferred aspects are natural language processing and question-answering."
"What I find the most valuable about Hugging Face is that I can check all the models on it and see which ones have the best performance without using another platform."
"The most valuable features are the inference APIs as it takes me a long time to run inferences on my local machine."
"I would rate this product nine out of ten."
"We have seen improved productivity and time saved from using Hugging Face; for a task that would have taken six hours, it saved us five hours, and we completed it in one hour with the plug-and-play integration of inference and everything, using the few lines of code that Hugging Face provides."
"The solution is easy to use compared to other frameworks like PyTorch and TensorFlow."
"Optimization is very good in TensorFlow. There are many opportunities to do hyper-parameter training."
"TensorFlow improves my organization because our clients get a lot of investment from their investors and we are progressively improving the products. Every six months we release new features."
"TensorFlow provides Insights into both data and machine learning strategies."
"TensorFlow is a framework that makes it really easy to use for deep learning."
"Edge computing has some limited resources but TensorFlow has been improving in its features. It is a great tool for developers."
"It's got quite a big community, which is useful."
"It is easy to use and learn."
"It provides us with 35 features like patch normalization layers, and it is easy to implement using the Kras library when the Kaspersky flow is running behind it."
 

Cons

"Access to the models and datasets could be improved."
"I believe Hugging Face has some room for improvement. There are some security issues. They provide code, but API tokens aren't indicated. Also, the documentation for particular models could use more explanation. But I think these things are improving daily. The main change I'd like to see is making the deployment of inference endpoints more customizable for users."
"Most people upload their pre-trained models on Hugging Face, but more details should be added about the models."
"Access to the models and datasets could be improved. Many interesting ones are restricted."
"I've worked on three projects using Hugging Face, and only once did we encounter a problem with the code. We had to use another open-source embedding from OpenAI to resolve it. Our team has three members: me, my colleague, and a team leader. We looked at the problem and resolved it."
"Initially, I faced issues with the solution's configuration."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging."
"It can incorporate AI into its services."
"TensorFlow Lite only outputs to C."
"I would love to have a user interface like a programming interface. You need to have a set of menus where you can put things together in a graphical interface. The complete automation of the integration of the modules would also be interesting. It’s more like plumbing as opposed to a fully automated environment."
"It doesn't allow for fast the proto-typing. So usually when we do proto-typing we will start with PyTorch and then once we have a good model that we trust, we convert it into TensorFlow. So definitely, TensorFlow is not very flexible."
"There are a lot of problems, such as integrating our custom code. In my experience model tuning has been a bit difficult to edit and tune the graph model for best performance. We have to go into the model but we do not have a model viewer for quick access."
"Personally, I find it to be a bit too much AI-oriented."
"It would be nice if the solution was in Hungarian. I would like more Hungarian NAT models."
"Enhancements could include increasing use cases and improving the accuracy of previously built models in TensorFlow. For instance, when we run certain models, the computing power of laptops becomes high."
"The solution is hard to integrate with the GPUs."
 

Pricing and Cost Advice

"Hugging Face is an open-source solution."
"So, it's requires expensive machines to open services or open LLM models."
"The solution is open source."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"We do not have to pay for the product."
"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"It is open-source software. You don't have to pay all the big bucks like Azure and Databricks."
"We are using the free version."
"I rate TensorFlow's pricing a five out of ten."
"The solution is free."
"I did not require a license for this solution. It a free open-source solution."
"I am using the open-source version of TensorFlow and it is free."
"TensorFlow is free."
"I think for learners to deploy a project, you can actually use TensorFlow for free. It's just amazing to have an open-source platform like TensorFlow to deploy your own project. Here in Russia no one really cares about licenses, as it is totally open source and free. My clients in the United States were also pleased to learn when they enquired, that licensing is free."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
881,282 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
University
10%
Manufacturing Company
9%
Comms Service Provider
9%
Financial Services Firm
9%
Manufacturing Company
14%
Comms Service Provider
9%
Financial Services Firm
9%
University
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise3
By reviewers
Company SizeCount
Small Business12
Midsize Enterprise3
Large Enterprise3
 

Questions from the Community

What needs improvement with Hugging Face?
Everything is pretty much sorted in Hugging Face, but it could be improved if there was an AI chatbot or an AI assistant in Hugging Face platform itself, which can guide you through the whole platf...
What is your primary use case for Hugging Face?
My main use case for Hugging Face is to download open-source models and train on a local machine. We use Hugging Face Transformers for simple and fast integration in our applications and AI-based a...
What advice do you have for others considering Hugging Face?
We have seen improved productivity and time saved from using Hugging Face; for a task that would have taken six hours, it saved us five hours, and we completed it in one hour with the plug-and-play...
What is your experience regarding pricing and costs for TensorFlow?
I am not familiar with the pricing setup cost and licensing.
What needs improvement with TensorFlow?
Providing more control by allowing users to build custom functions would make TensorFlow a better option. It currently offers inbuilt functions, however, having the ability to implement custom libr...
What is your primary use case for TensorFlow?
I've used TensorFlow for image classification tasks, object detection tasks, and OCR.
 

Comparisons

 

Overview

 

Sample Customers

Information Not Available
Airbnb, NVIDIA, Twitter, Google, Dropbox, Intel, SAP, eBay, Uber, Coca-Cola, Qualcomm
Find out what your peers are saying about Hugging Face vs. TensorFlow and other solutions. Updated: December 2025.
881,282 professionals have used our research since 2012.