Try our new research platform with insights from 80,000+ expert users

Dataiku vs Domino Data Science Platform comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Dataiku
Ranking in Data Science Platforms
6th
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
12
Ranking in other categories
No ranking in other categories
Domino Data Science Platform
Ranking in Data Science Platforms
15th
Average Rating
7.6
Reviews Sentiment
6.7
Number of Reviews
2
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of April 2025, in the Data Science Platforms category, the mindshare of Dataiku is 12.7%, up from 8.2% compared to the previous year. The mindshare of Domino Data Science Platform is 2.5%, down from 2.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

RichardXu - PeerSpot reviewer
The platform organizes workflows visually and efficiently
One of the valuable features of Dataiku is the workflow capability. It allows us to organize a workflow efficiently. The platform has a visual interface, making it much easier for educated professionals to organize their work. This feature is useful because it simplifies tasks and eliminates the need for a data scientist. If you are knowledgeable about AI, you can directly write using primitive tools like Pantera flow, PyTorch, and Scikit-learn. However, Dataiku makes this process much easier.
AS
Accelerated machine learning model development with seamless deployment
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar to using Git. Each user operates on their own equivalent of a branch or fork, and once finished, they…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"If many teams are collaborating and sharing Jupyter notebooks, it's very useful."
"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"I believe the return on investment looks positive."
"Extremely easy to use with its GUI-based functionality and large compatibility with various data sources. Also, maintenance processes are much more automated than ever, with fewer errors."
"The most valuable feature of this solution is that it is one tool that can do everything, and you have the ability to very easily push your design to prediction."
"Dataiku is highly regarded as it is a leader in the Gartner ranking."
"Traceability is vital since I manage many cohorts, and collaboration is key as I have multiple engineers substituting for one another."
"The solution is quite stable."
"The scalability of the solution is good; I'd rate it four out of five."
"The workspaces, which are like wrappers of Docker containers, made it easy to start development environments using Domino."
 

Cons

"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"One area for improvement is the need for more capabilities similar to those provided by NVIDIA for parallel machine learning training. We still encounter some integration issues."
"Although known for Big Data, the processing time to process 1.8 billion records was terribly slow (five days)."
"There is room for improvement in terms of allowing for more code-based features."
"The ability to have charts right from the explorer would be an improvement."
"There were stability issues: 1) SQL operations, such as partitioning, had bugs and showed wrong results. 2) Due to server downtime, scheduled processes used to fail. 3) Access to project folders was compromised (privacy issue) with wrong people getting access to confidential project folders."
"Server up-time needs to be improved. Also, query engines like Spark and Hive need to be more stable."
"I find that it is a little slow during use. It takes more time than I would expect for operations to complete."
"The deployment of large language models (LLMs) could be improved."
"The predictive analysis feature needs improvement."
 

Pricing and Cost Advice

"Pricing is pretty steep. Dataiku is also not that cheap."
"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
Information not available
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
849,190 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Educational Organization
12%
Manufacturing Company
9%
Computer Software Company
9%
Financial Services Firm
35%
Manufacturing Company
11%
Insurance Company
9%
Computer Software Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What is your experience regarding pricing and costs for Dataiku Data Science Studio?
I find the pricing of Dataiku quite affordable for our customers, as they are usually large companies. However, it is a pricey solution and I primarily recommend it to bigger companies.
What needs improvement with Dataiku Data Science Studio?
There is room for improvement in terms of allowing for more code-based features. I would love for Dataiku to allow more flexibility with code-based components and provide the possibility to extend ...
What is your primary use case for Dataiku Data Science Studio?
My company sells licenses for both Dataiku and Alteryx, and we have clients who use them. I engage with several companies in telecommunications, retail, and energy to assess how our clients are uti...
What needs improvement with Domino Data Science Platform?
The deployment of large language models (LLMs) could be improved. Currently, Domino provides a simple server that cannot handle big deployments, which is not suitable for LLMs.
What is your primary use case for Domino Data Science Platform?
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar...
What advice do you have for others considering Domino Data Science Platform?
It's important to have a DevOps team well-versed with cloud-native solutions to manage Domino effectively. Relying solely on data scientists might not be sufficient. I'd rate the solution eight out...
 

Also Known As

Dataiku DSS
Domino Data Lab Platform
 

Interactive Demo

Demo not available
 

Overview

 

Sample Customers

BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Allstate, GSK, AstraZeneca, Federal Reserve, US Navy, Bristol Myers Squibb, Bayer, BNP Paribas, Moodys, New York Life
Find out what your peers are saying about Dataiku vs. Domino Data Science Platform and other solutions. Updated: April 2025.
849,190 professionals have used our research since 2012.