Try our new research platform with insights from 80,000+ expert users

Dataiku vs H2O.ai comparison

Sponsored
 

Comparison Buyer's Guide

Executive Summary
 

Categories and Ranking

IBM SPSS Statistics
Sponsored
Ranking in Data Science Platforms
10th
Average Rating
8.0
Number of Reviews
37
Ranking in other categories
Data Mining (3rd)
Dataiku
Ranking in Data Science Platforms
7th
Average Rating
8.0
Number of Reviews
8
Ranking in other categories
No ranking in other categories
H2O.ai
Ranking in Data Science Platforms
22nd
Average Rating
7.6
Number of Reviews
8
Ranking in other categories
Model Monitoring (8th)
 

Mindshare comparison

As of November 2024, in the Data Science Platforms category, the mindshare of IBM SPSS Statistics is 2.8%, up from 2.6% compared to the previous year. The mindshare of Dataiku is 11.5%, up from 7.5% compared to the previous year. The mindshare of H2O.ai is 1.5%, up from 1.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

AbakarAhmat - PeerSpot reviewer
Enhancing survey analysis that provides valued insightfulness
I used traditional tools where I would prepare data, click through menus, and use SQL Server for data visualization. We switched to IBM SPSS because it offers strong certification and aligns well with the standards we prioritize in our surveys. In terms of popularity, it stands out as the top choice in the market, especially in the research and university domains. Many different organizations and institutions use SPSS for statistical analytics. While there are other tools like MCLab and similar options available, SPSS is the most renowned and widely used among them.
Sabrine Bendimerad - PeerSpot reviewer
Saves a lot of time because I can quickly handle all the data preparation tasks and concentrate on building my machine learning algorithms
One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated. While it was theoretically possible to use GitHub with Dataiku, in practice, it was difficult to manage our code effectively and push it from Dataiku to GitHub. Another limitation was its ability to handle different types of data. While Dataiku is powerful for working with structured data, like regular or geospatial data, it struggled with more complex data types such as text and image. In addition to the challenges with GitHub integration, the limited support for diverse data types was another feature lacking at that time.
Kashif Yaseen - PeerSpot reviewer
Plug-and-play convenience enhances productivity but needs better multimodal support
We mostly used the solution in the domain that I'm working. We had most of the use cases around chatbots and conversational BI The solution was plug-and-play, meaning most of the components were handled by the solution itself rather than building them from scratch. This was useful for our banking…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Capability analysis is one of the main and valuable functions. We also do some hypothesis testing in Minitab and summary stats. These are the functions that we find very useful."
"The solution has numerous valuable features. We particularly like custom tabs. It's very useful. We end up analyzing a lot of software data, so features related to custom tabs are really helpful."
"In terms of the features I've found most valuable, I'd say the duration, the correlation, and of course the nonparametric statistics. I use it for reliability and survival analysis, time series, regression models in different solutions, and different types of solutions."
"The most valuable feature of IBM SPSS Statistics is all the functionality it provides. Additionally, it is simple to do the five-way analysis that you can into multidimensional setup space. It's the multidimensional space facility that is most useful."
"IBM SPSS Statistics depends on AI."
"The most valuable features are the solution is easy to use, training new users is not difficult, and our usage is comprehensive because the whole service is beneficial."
"The most valuable features mainly include factor analysis, correlation analysis, and geographic analysis."
"The most valuable features are the small learning curve and its ability to hold a lot of data."
"If many teams are collaborating and sharing Jupyter notebooks, it's very useful."
"Data Science Studio's data science model is very useful."
"The solution is quite stable."
"Cloud-based process run helps in not keeping the systems on while processes are running."
"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"The most valuable feature is the set of visual data preparation tools."
"Extremely easy to use with its GUI-based functionality and large compatibility with various data sources. Also, maintenance processes are much more automated than ever, with fewer errors."
"The advantage is that you can focus on machine learning while having access to what they call 'recipes.' These recipes allow me to preprocess and prepare data without writing any code."
"The most valuable feature of H2O.ai is that it is plug-and-play."
"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"Fast training, memory-efficient DataFrame manipulation, well-documented, easy-to-use algorithms, ability to integrate with enterprise Java apps (through POJO/MOJO) are the main reasons why we switched from Spark to H2O."
"The ease of use in connecting to our cluster machines."
 

Cons

"I'd like to see them use more artificial intelligence. It should be smart enough to do predictions and everything based on what you input."
"The solution needs to improve forecasting using time series analysis."
"The solution needs more planning tools and capabilities."
"It could allow adding color to data models to make them easier to interpret."
"SPSS slows down the computer or the laptop if the data is huge; then you need a faster computer."
"The reports could be better."
"In some cases, the product takes time to load a large dataset. They could improve this particular area."
"Perhaps in terms of visualization. It's not really easy to do some data visualization, just simple, descriptive analysis in SPSS. I think that could be an area for improvement."
"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"Dataiku still needs some coding, and that could be a difference where business data scientists would go for DataRobot more than Dataiku."
"One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated."
"Although known for Big Data, the processing time to process 1.8 billion records was terribly slow (five days)."
"The interface for the web app can be a bit difficult. It needs to have better capabilities, at least for developers who like to code. This is due to the fact that everything is enabled in a single window with different tabs. For them to actually develop and do the concurrent testing that needs to be done, it takes a bit of time. That is one improvement that I would like to see - from a web app developer perspective."
"I find that it is a little slow during use. It takes more time than I would expect for operations to complete."
"Server up-time needs to be improved. Also, query engines like Spark and Hive need to be more stable."
"I think it would help if Data Science Studio added some more features and improved the data model."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"I would like to see more features related to deployment."
"Referring to bullet-3 as well, H2O DataFrame manipulation capabilities are too primitive."
"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"H2O.ai can improve in areas like multimodal support and prompt engineering."
"The model management features could be improved."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
 

Pricing and Cost Advice

"If it requires lot of data processing, maybe switching to IBM SPSS Clementine would be better for the buyer."
"I rate the tool's pricing a five out of ten."
"SPSS is an expensive piece of software because it's incredibly complex and has been refined over decades, but I would say it's fairly priced."
"The price of this solution is a little bit high, which was a problem for my company."
"While the pricing of the product may be higher, the accompanying service and features justify the investment."
"The price of IBM SPSS Statistics could improve."
"We think that IBM SPSS is expensive for this function."
"It's quite expensive, but they do a special deal for universities."
"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
"Pricing is pretty steep. Dataiku is also not that cheap."
"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
816,406 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
17%
University
9%
Computer Software Company
9%
Manufacturing Company
8%
Financial Services Firm
18%
Educational Organization
16%
Manufacturing Company
9%
Computer Software Company
8%
Financial Services Firm
20%
Computer Software Company
11%
Manufacturing Company
10%
Insurance Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about IBM SPSS Statistics?
The software offers consistency across multiple research projects helping us with predictive analytics capabilities.
What is your experience regarding pricing and costs for IBM SPSS Statistics?
The cost of IBM SPSS Statistics is managed by organizations, not individual researchers. It is a very expensive produ...
What needs improvement with IBM SPSS Statistics?
IBM SPSS Statistics does not keep you close to your data like KNIME. In KNIME, at every stage, you can see the result...
What needs improvement with Dataiku Data Science Studio?
One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integratin...
What is your primary use case for Dataiku Data Science Studio?
We use the solution for data science and machine learning.
Ask a question
Earn 20 points
 

Comparisons

 

Also Known As

SPSS Statistics
Dataiku DSS
No data available
 

Learn More

Video not available
 

Overview

 

Sample Customers

LDB Group, RightShip, Tennessee Highway Patrol, Capgemini Consulting, TEAC Corporation, Ironside, nViso SA, Razorsight, Si.mobil, University Hospitals of Leicester, CROOZ Inc., GFS Fundraising Solutions, Nedbank Ltd., IDS-TILDA
BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Find out what your peers are saying about Dataiku vs. H2O.ai and other solutions. Updated: October 2024.
816,406 professionals have used our research since 2012.