Try our new research platform with insights from 80,000+ expert users

Databricks vs H2O.ai comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Databricks
Ranking in Data Science Platforms
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
91
Ranking in other categories
Cloud Data Warehouse (8th), Streaming Analytics (1st)
H2O.ai
Ranking in Data Science Platforms
16th
Average Rating
7.6
Reviews Sentiment
6.8
Number of Reviews
10
Ranking in other categories
Model Monitoring (4th)
 

Mindshare comparison

As of August 2025, in the Data Science Platforms category, the mindshare of Databricks is 15.3%, down from 19.8% compared to the previous year. The mindshare of H2O.ai is 1.8%, up from 1.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.
Abhay Vyas - PeerSpot reviewer
Advanced model selection and time efficiency meet needs but documentation and fusion model support are needed
Even though H2O.ai provides the best model, there could be improvements in certain areas. For instance, when you want to work with fusion models, H2O.ai doesn't provide that kind of information. Currently, it provides individual models as outcomes. If it could offer combinations of models, such as suggesting using XGBoost along with SVM for wonderful results, that fusion model concept would be a good option for developers. I hope the fusion model concept will be implemented soon in H2O.ai. Regarding documentation, I faced challenges as I didn't see much information from a documentation perspective. When I was trying to learn how to train and test H2O.ai, there was limited documentation available. If they could improve in that area, it would be really beneficial.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Databricks' most valuable feature is the data transformation through PySpark."
"Databricks' Lakehouse architecture has been most useful for us. The data governance has been absolutely efficient in between other kinds of solutions."
"Databricks helps crunch petabytes of data in a very short period of time."
"The initial setup phase of Databricks was good."
"When we have a huge volume of data that we want to process with speed, velocity, and volume, we go through Databricks."
"Having one solution for everything, from data engineering to machine learning, is beneficial since everything comes under one hood."
"Specifically for data science and data analytics purposes, it can handle large amounts of data in less time. I can compare it with Teradata. If a job takes five hours with Teradata databases, Databricks can complete it in around three to three and a half hours."
"Its lightweight and fast processing are valuable."
"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"The most valuable feature of H2O.ai is that it is plug-and-play."
"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"H2O.ai provides better flexibility where I could examine more models and obtain results, and based on these results, I could make the next set of decisions."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"I have utilized the AutoML feature in H2O.ai, which is one of the very powerful features where you don't need to worry about which algorithm is best for your model."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"The ease of use in connecting to our cluster machines."
 

Cons

"The stability of the clusters or the instances of Databricks would be better if it was a much more stable environment. We've had issues with crashes."
"The product should incorporate more learning aspects. It needs to have a free trial version that the team can practice."
"The interface of Databricks could be easier to use when compared to other solutions. It is not easy for non-data scientists. The user interface is important before we had to write code manually and as solutions move to "No code AI" it is critical that the interface is very good."
"There has been a significant evolution in databases. One area of improvement is the Databricks File System (DBFS), where command-line challenges arise when accessing files."
"The biggest problem associated with the product is that it is quite pricey."
"The integration and query capabilities can be improved."
"There is room for improvement in the documentation of processes and how it works."
"The product cannot be integrated with a popular coding IDE."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
"The model management features could be improved."
"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"H2O.ai can improve in areas like multimodal support and prompt engineering."
"One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with various data sources."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"I would like to see more features related to deployment."
 

Pricing and Cost Advice

"I would rate the tool’s pricing an eight out of ten."
"The licensing costs of Databricks depend on how many licenses we need, depending on which Databricks provides a lot of discounts."
"The product pricing is moderate."
"I'm not involved in the financing, but I can say that the solution seemed reasonably priced compared to the competitors. Similar products are usually in the same price range. With five being affordable and one being expensive, I would rate Databricks a four out of five."
"Databricks' cost could be improved."
"We only pay for the Azure compute behind the solution."
"We're charged on what the data throughput is and also what the compute time is."
"We find Databricks to be very expensive, although this improved when we found out how to shut it down at night."
"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
865,164 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
17%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
6%
Computer Software Company
17%
Financial Services Firm
17%
Manufacturing Company
9%
Educational Organization
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What needs improvement with H2O.ai?
One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with v...
What is your primary use case for H2O.ai?
Normally, I use H2O.ai for my machine learning tasks, and to give an example, some of the models that I've created using H2O.ai are taxi demand forecasting and a scoring model for leads. Most of my...
What advice do you have for others considering H2O.ai?
I would rate the technical support a nine. For organizations considering H2O.ai, my recommendations include appreciating it as a great and flexible tool for machine learning tasks without incurring...
 

Comparisons

 

Also Known As

Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
No data available
 

Overview

 

Sample Customers

Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Find out what your peers are saying about Databricks vs. H2O.ai and other solutions. Updated: July 2025.
865,164 professionals have used our research since 2012.