Try our new research platform with insights from 80,000+ expert users

H2O.ai vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

H2O.ai
Ranking in Data Science Platforms
20th
Average Rating
7.6
Reviews Sentiment
7.2
Number of Reviews
8
Ranking in other categories
Model Monitoring (6th)
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
4th
Average Rating
7.6
Reviews Sentiment
7.0
Number of Reviews
60
Ranking in other categories
AI Development Platforms (3rd)
 

Mindshare comparison

As of January 2025, in the Data Science Platforms category, the mindshare of H2O.ai is 1.5%, down from 1.6% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 5.7%, down from 10.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Kashif Yaseen - PeerSpot reviewer
Plug-and-play convenience enhances productivity but needs better multimodal support
We mostly used the solution in the domain that I'm working. We had most of the use cases around chatbots and conversational BI The solution was plug-and-play, meaning most of the components were handled by the solution itself rather than building them from scratch. This was useful for our banking…
HéctorGiorgiutti - PeerSpot reviewer
Requires minimal maintenance, is scalable, and stable
The initial setup depends on the developer's knowledge of machine learning models as to whether it is easy or difficult. With a good understanding of these models, then we can get to work quickly in the environment. With 20 years of experience in IT, making applications on legacy platforms and non-web platforms, I have found that Azure has a very good implementation. The platform is so comprehensive that it doesn't matter what kind of work we do, we can find the tools needed to get the job done. In comparison to what I was doing five years ago, Azure is a great platform and I really enjoy working with it. We should allocate up to 12 percent of our project time to deployment. Depending on the complexity of the solution, we should expect to spend more time on deployment.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"The most valuable feature of H2O.ai is that it is plug-and-play."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"The ease of use in connecting to our cluster machines."
"Fast training, memory-efficient DataFrame manipulation, well-documented, easy-to-use algorithms, ability to integrate with enterprise Java apps (through POJO/MOJO) are the main reasons why we switched from Spark to H2O."
"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"Regarding the technical support for the solution, I find the documentation provided comprehensive and helpful."
"Azure's AutoML feature is probably better than the competition."
"The solution facilitates our production."
"In terms of what I found most valuable in Microsoft Azure Machine Learning Studio, I especially love the designer because you can just drag and drop items there and apply the logic that's already available with the designer. I love that I can use the libraries in Microsoft Azure Machine Learning Studio, so I don't have to search for the algorithms and all the relevant libraries because I can see them directly on the designer just by dragging and dropping. Though there's a bit of work during data cleansing, that's normal and can't be avoided. At least it's easy to find the relevant algorithm, apply that algorithm to the data, then get the desired output through Microsoft Azure Machine Learning Studio. I also like the API feature of the solution which is readily available for me to expose the output to any consuming application, so that takes out a lot of headache. Otherwise, I have to have a developer who knows the API, and I have to have an API app, so all that is completely taken care of by the Microsoft Azure Machine Learning Studio designer. With the solution, I can concentrate on how to improve the data quality to get quality recommendations, so this lets me concentrate on my job rather than focusing on the regular development of APIs or the pipelines, in particular, the data pipelines pulling the data from other sources. All the data is taken care of and you can also concentrate on other required auxiliary activities rather than just concentrating on machine learning."
"The integration with Azure services enhances workflow and meets my expectations."
"The product supports open-source tools."
"I've developed a couple of chatbots using Azure OpenAI, leveraging its documented solutions and APIs. The tools available make it straightforward to implement machine learning solutions. However, there are challenges, such as hallucinations and security issues, but overall, it works well and is quite fast, allowing for the development of interesting projects."
"I like that it's totally easy to use. They have an AutoML solution, and their machine learning model is highly accurate. They also have a feature that can explain the machine learning model. This makes it easy for me to understand that model."
 

Cons

"H2O.ai can improve in areas like multimodal support and prompt engineering."
"Referring to bullet-3 as well, H2O DataFrame manipulation capabilities are too primitive."
"The model management features could be improved."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"I would like to see more features related to deployment."
"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
"The platform's integration feature could be better."
"In terms of improvement, I'd like to have more ability to construct and understand the detailed impact of the variables on the model. Their algorithms are very powerful and they explain overall the net contribution of each of the variables to the solution. In terms of being able to say to people "If you did this, you'll get this much more improvement" it wasn't great."
"Operability with R could be improved."
"Overall, the icons in the solution could be improved to provide better guidance to users. Additionally, the setup process for the solution could be made easier."
"The speed of deployment should be faster, as should testing."
"n the solution, there is the concept of workspaces, and there is no means to share the computing infrastructure across those workspaces."
"I would like to see modules to handle Deep Learning frameworks."
"The regulatory requirements of the product need improvement."
 

Pricing and Cost Advice

"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
"The licensing cost is very cheap. It's less than $50 a month."
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
"In terms of pricing, for any cloud solution, you should know the tricks of the trade and how to use it, otherwise, you'll end up paying a lot of money irrespective of the cloud provider, so at least for Microsoft Azure Machine Learning Studio pricing versus AWS, I would rate it three out of five, with one being the most expensive, and five being the cheapest. It could be cheaper, but you also have to be careful when choosing the plans, for example, consider the architecture and a lot of other factors before choosing your plan, if you don't want to end up paying more. If your cloud provider has an optimizer that seems to be available in every provider, that would keep alerting you in terms of resources not being used as much, then that would help you with budgeting."
"The solution operates on a pay-per-use model."
"The product's pricing is reasonable."
"We pay only the Azure costs for what we use, which involves some subscription costs. But essentially, you pay for what you use. There are no extra costs in addition to the standard licensing fees."
"The platform's price is low."
"When we got our first models and were ready for the user acceptance testing, our licensing fees were between €2,500 ($2,750 USD) and €3,000 ($3,300 USD) monthly."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
831,615 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
21%
Computer Software Company
12%
Manufacturing Company
10%
Energy/Utilities Company
6%
Financial Services Firm
13%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What needs improvement with H2O.ai?
H2O.ai can improve in areas like multimodal support and prompt engineering. They are already working on updates and changes. Although I haven't explored all the new products they've added to their ...
What is your primary use case for H2O.ai?
We mostly used the solution in the domain that I'm working. We had most of the use cases around chatbots and conversational BI.
What advice do you have for others considering H2O.ai?
It is important to address data privacy concerns and ensure you're choosing the right vendor that meets your use case demands. Also, you may leave my name, Kashif, but please keep the company name ...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
Pricing is considered to be top-segment and should be improved. I rate the pricing as three or four on a scale of one to ten in terms of affordability.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about H2O.ai vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: January 2025.
831,615 professionals have used our research since 2012.