Try our new research platform with insights from 80,000+ expert users

H2O.ai vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

H2O.ai
Ranking in Data Science Platforms
20th
Average Rating
7.6
Reviews Sentiment
7.2
Number of Reviews
8
Ranking in other categories
Model Monitoring (6th)
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
5th
Average Rating
7.6
Reviews Sentiment
7.0
Number of Reviews
60
Ranking in other categories
AI Development Platforms (3rd)
 

Mindshare comparison

As of February 2025, in the Data Science Platforms category, the mindshare of H2O.ai is 1.5%, down from 1.5% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 5.5%, down from 10.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Kashif Yaseen - PeerSpot reviewer
Plug-and-play convenience enhances productivity but needs better multimodal support
We mostly used the solution in the domain that I'm working. We had most of the use cases around chatbots and conversational BI The solution was plug-and-play, meaning most of the components were handled by the solution itself rather than building them from scratch. This was useful for our banking…
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"The most valuable feature of H2O.ai is that it is plug-and-play."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"The ease of use in connecting to our cluster machines."
"Fast training, memory-efficient DataFrame manipulation, well-documented, easy-to-use algorithms, ability to integrate with enterprise Java apps (through POJO/MOJO) are the main reasons why we switched from Spark to H2O."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"ML Studio is very easy to maintain."
"The graphical nature of the output makes it very easy to create PowerPoint reports as well."
"Regarding the technical support for the solution, I find the documentation provided comprehensive and helpful."
"The solution is integrated with our Microsoft Azure tenant, and we don't have to go anywhere else outside the tenant."
"The AutoML is helpful when you're starting to explore the problem that you're trying to solve."
"MLS allows me to set up data experiments by running through various regression and other machine learning algorithms, with different data cleaning and treatment tools. All of this can be achieved via drag and drop, and a few clicks of the mouse."
"Overall, I rate Microsoft Azure Machine Learning Studio a seven out of ten."
"The initial setup is very simple and straightforward."
 

Cons

"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"I would like to see more features related to deployment."
"H2O.ai can improve in areas like multimodal support and prompt engineering."
"The model management features could be improved."
"Referring to bullet-3 as well, H2O DataFrame manipulation capabilities are too primitive."
"It is not easy. It is a complex solution. It takes some time to get exposed to all the concepts. We're trying to have a CI/CD pipeline to deploy a machine learning model using negative actions. It was not easy. The components that we're using might have something to do with this."
"I cannot comment on specific improvements yet as we are still exploring and need more time to identify the areas that require enhancements."
"Performance is very poor."
"Stability-wise, you may face certain problems when you fail to refresh the data in the solution."
"The interface is a bit overloaded."
"The price of the solution has room for improvement."
"Operability with R could be improved."
"One problem I experience is that switching between multiple accounts can be difficult. I don't think there are any major issues. Mostly, the biggest challenge is to identify business solutions to this. The tool should keep on updating new algorithms and not stay static."
 

Pricing and Cost Advice

"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
"There is a license required for this solution."
"My team didn't deal with the licensing for Microsoft Azure Machine Learning Studio, so I'm unable to comment on pricing, but the money that was spent on the tool was worth it."
"Last year, we paid 60,000 for Microsoft Azure Machine Learning Studio in our department."
"To use MLS is fairly cheap. Even the paid account is something like $20/month, unless you are provisioning large numbers of VMs for a Hadoop cluster. The main MS makes money with this solution is forcing the user to deploy their model on REST API, and being charged each time the API is accessed. There are several pricing tiers for the API. If you do not use the API, then value of MLS is to create rapid experiments ($20/month). The resulting model is not exportable to use, thus you’ll have to recreate the algorithms in either R or Python, which is what I did. MLS results gave me a direction to work with, the actual work is mostly done in R and Python outside of MLS."
"I rate the solution's pricing a four on a scale of one to ten, where one is cheap, and ten is expensive."
"There isn’t any such expensive costs and only a standard license is required."
"The pricing for Microsoft products can be complex due to changes and being cloud-based, so it's not straightforward. I've been familiar with it for years, but sometimes details about product licenses and distribution can be unclear. For Microsoft Azure Machine Learning Studio specifically, I would rate the price a six out of ten."
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
839,164 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
22%
Computer Software Company
11%
Manufacturing Company
9%
Energy/Utilities Company
7%
Financial Services Firm
13%
Computer Software Company
11%
Manufacturing Company
10%
Healthcare Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What needs improvement with H2O.ai?
H2O.ai can improve in areas like multimodal support and prompt engineering. They are already working on updates and changes. Although I haven't explored all the new products they've added to their ...
What is your primary use case for H2O.ai?
We mostly used the solution in the domain that I'm working. We had most of the use cases around chatbots and conversational BI.
What advice do you have for others considering H2O.ai?
It is important to address data privacy concerns and ensure you're choosing the right vendor that meets your use case demands. Also, you may leave my name, Kashif, but please keep the company name ...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
Pricing is considered to be top-segment and should be improved. I rate the pricing as three or four on a scale of one to ten in terms of affordability.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about H2O.ai vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: January 2025.
839,164 professionals have used our research since 2012.