Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Domino Data Science Platform comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
3rd
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
36
Ranking in other categories
AI Development Platforms (4th)
Domino Data Science Platform
Ranking in Data Science Platforms
15th
Average Rating
7.6
Reviews Sentiment
6.7
Number of Reviews
2
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of February 2025, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 7.6%, down from 9.9% compared to the previous year. The mindshare of Domino Data Science Platform is 2.5%, down from 2.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Hemant Paralkar - PeerSpot reviewer
Improves team collaboration with advanced feature sharing but needs a better user experience
Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background. Additionally, dealing with frequent UI updates can be challenging, especially for infrastructure architects like myself. It involves effort to migrate to new UIs, making the updates not seamless. User auditing requires enhancements as tracking operations performed by users can be difficult due to dynamic IP validation and role propagation.
AS
Accelerated machine learning model development with seamless deployment
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar to using Git. Each user operates on their own equivalent of a branch or fork, and once finished, they…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The Autopilot feature is really good because it's helpful for people who don't have much experience with coding or data pipelines. When we suggest SageMaker to clients, they don't have to go through all the steps manually. They can leverage Autopilot to choose variables, run experiments, and monitor costs. The results are also pretty accurate."
"The product aggregates everything we need to build and deploy machine learning models in one place."
"The deployment is very good, where you only need to press a few buttons."
"Amazon SageMaker is highly valuable for managing ML workloads. It connects to AWS cloud resources, making it easy to deploy algorithms and collaborate using tools like GitLab. It offers a wide range of Python libraries and other necessary tools for modelling and algorithms."
"SageMaker is a comprehensive platform where I can perform all machine learning activities."
"The tool has made client management easier where patients need to upload their health records and we can use the tool to understand details on treatment date, amount, etc."
"They offer insights into everyone making calls in my organization."
"The few projects we have done have been promising."
"The scalability of the solution is good; I'd rate it four out of five."
"The workspaces, which are like wrappers of Docker containers, made it easy to start development environments using Domino."
 

Cons

"The documentation must be made clearer and more user-friendly."
"The main challenge with Amazon SageMaker is the integrations."
"I would suggest that Amazon SageMaker provide free slots to allow customers to practice, such as a free slot to try out working with a Sandbox."
"One area where Amazon SageMaker could improve is its pricing. The high costs can drive companies to explore other cloud options. Additionally, while generally good, the updates sometimes come with bugs, and the documentation could be much better. More examples and clearer guidance would be helpful."
"While integration is available, there are concerns about how secure this integration is, particularly when exposing data to SageMaker."
"I had to create custom templates for labeling multi-data sets, such as text and images, which was time-consuming."
"Improvements are needed in terms of complexity, data security, and access policy integration in Amazon SageMaker."
"Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker."
"The deployment of large language models (LLMs) could be improved."
"The predictive analysis feature needs improvement."
 

Pricing and Cost Advice

"The pricing is comparable."
"SageMaker is worth the money for our use case."
"Amazon SageMaker is a very expensive product."
"The pricing could be better, especially for querying. The per-query model feels expensive."
"On average, customers pay about $300,000 USD per month."
"I would rate the solution's price a ten out of ten since it is very high."
"The solution is relatively cheaper."
"The cost offers a pay-as-you-go pricing model. It depends on the instance that you do."
Information not available
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
838,533 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Educational Organization
14%
Computer Software Company
11%
Manufacturing Company
9%
Financial Services Firm
34%
Manufacturing Company
11%
Insurance Company
10%
Computer Software Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
Before deploying SageMaker, I reviewed the pricing, especially for notebook instances. The cost for small to medium instances is not very high.
What needs improvement with Domino Data Science Platform?
The deployment of large language models (LLMs) could be improved. Currently, Domino provides a simple server that cannot handle big deployments, which is not suitable for LLMs.
What is your primary use case for Domino Data Science Platform?
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar...
What advice do you have for others considering Domino Data Science Platform?
It's important to have a DevOps team well-versed with cloud-native solutions to manage Domino effectively. Relying solely on data scientists might not be sufficient. I'd rate the solution eight out...
 

Also Known As

AWS SageMaker, SageMaker
Domino Data Lab Platform
 

Interactive Demo

 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Allstate, GSK, AstraZeneca, Federal Reserve, US Navy, Bristol Myers Squibb, Bayer, BNP Paribas, Moodys, New York Life
Find out what your peers are saying about Amazon SageMaker vs. Domino Data Science Platform and other solutions. Updated: January 2025.
838,533 professionals have used our research since 2012.