Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs DataRobot comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in AI Development Platforms
4th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
36
Ranking in other categories
Data Science Platforms (3rd)
DataRobot
Ranking in AI Development Platforms
13th
Average Rating
8.6
Reviews Sentiment
7.1
Number of Reviews
4
Ranking in other categories
Predictive Analytics (5th), AIOps (16th)
 

Mindshare comparison

As of January 2025, in the AI Development Platforms category, the mindshare of Amazon SageMaker is 6.9%, down from 8.8% compared to the previous year. The mindshare of DataRobot is 1.4%, up from 1.0% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Hemant Paralkar - PeerSpot reviewer
Improves team collaboration with advanced feature sharing but needs a better user experience
Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background. Additionally, dealing with frequent UI updates can be challenging, especially for infrastructure architects like myself. It involves effort to migrate to new UIs, making the updates not seamless. User auditing requires enhancements as tracking operations performed by users can be difficult due to dynamic IP validation and role propagation.
Raviteja Guna - PeerSpot reviewer
Highly automated solution allowing data scientists to build models easily
Based on your similar requirements, V10.0 has very cool features related to AI Generation. I would suggest the team, too. This is very good for data scientists or people who don't want to code. Even the documentation is well-maintained in terms of its capabilities. It's easy to navigate. The support documents are good. Even someone with basic IT knowledge can easily navigate. If you're an IT engineer, you can efficiently perform operations using it. We have deployed eight to nine use cases on DataRobot and have seen a tremendous response in accuracy and performance. We are pleased because we conducted a comparison. We took a model we built using a sample Python on a local machine and applied the same data and process using DataRobot Autopilot. The results were pretty amazing, with promising accuracy and recall. The accessibility is so easy. Even a college graduate with essential experience can use it. Suppose I do the same model in Databricks and want to monitor my MLOps pipeline. So, I need to use a third-party framework again, like MLflow, Kubeflow, Airflow, or whatever. I need to build my dashboards and everything, customization dashboards. However, everything is available in DataRobot. I can use it directly. They have a new option called DataRobot apps. So, on the predictions, we can even create customized apps. I can build my dashboard, and I can develop my applications. Overall, I rate the solution an eight out of ten.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The technical support from AWS is excellent."
"SageMaker supports building, training, and deploying AI models from scratch, which is crucial for my ML project."
"We've had no problems with SageMaker's stability."
"The few projects we have done have been promising."
"The intuitive interface and streamlined user experience make it easy to navigate and set up various tools like Visual Studio Code or Jupyter Notebook."
"The most valuable feature of Amazon SageMaker is that you don't have to do any programming in order to perform some of your use cases."
"The deployment is very good, where you only need to press a few buttons."
"The most tool's valuable feature, in my experience, is hyperparameter tuning. It allows us to test different parameters for the same model in parallel, which helps us quickly identify the configuration that yields the highest accuracy. This parallel computing capability saves us a lot of time."
"DataRobot can be easy to use."
"We especially like the initial part of feature engineering, because feature engineering is included in most engines, but DataRobot has an excellent way of picking up the right features."
"DataRobot is highly automated, allowing data scientists to build models easily."
"It's easy to do MLOps operations. It's a lot easier to manage jobs and see the logs if there's any drift in a model."
 

Cons

"The platform could be more accessible to users with basic coding skills, making it more intuitive and easier for beginners to use comfortably."
"Amazon SageMaker could improve in the area of hyperparameter tuning by offering more automated suggestions and tips during the tuning process."
"The training modules could be enhanced. We had to take in-person training to fully understand SageMaker, and while the trainers were great, I think more comprehensive online modules would be helpful."
"The solution is complex to use."
"One area for improvement is the pricing, which can be quite high."
"Scalability to handle big data can be improved by making integration with networks such as Hadoop and Apache Spark easier."
"For any cloud provider, the cost has to be substantially reduced, especially in the case of Amazon SageMaker, which is extremely expensive for huge workloads."
"I would suggest that Amazon SageMaker provide free slots to allow customers to practice, such as a free slot to try out working with a Sandbox."
"The business departments will love to work with DataRobot because they use the tool to investigate their data, such as targeting what they want to investigate. They don't need any data scientists near them. They can investigate at eye level and bring into the BI tool, or can bring it to the data scientist. Data scientists can use this tool to bring increase the solution to the maximum. All the others can use it, but not to the maximum."
"If we could include our existing Python or R code in DataRobot, we could make it even better. The DataRobot that we have is specific to an industry, but most of the time we would have our own algorithms, which are specific to our own use case. If we had a way by which we could integrate our proprietary things into DataRobot with a simple integration, it would help us a lot."
"Generative AI has taken pace, and I would like to see how DataRobot assists in doing generative AI and large language models."
"There are some performance issues."
 

Pricing and Cost Advice

"The pricing is complicated as it is based on what kind of machines you are using, the type of storage, and the kind of computation."
"The pricing could be better, especially for querying. The per-query model feels expensive."
"Amazon SageMaker is a very expensive product."
"The tool's pricing is reasonable."
"There is no license required for the solution since you can use it on demand."
"On average, customers pay about $300,000 USD per month."
"I rate the pricing a five on a scale of one to ten, where one is the lowest price, and ten is the highest price. The solution is priced reasonably. There is no additional cost to be paid in excess of the standard licensing fees."
"Databricks solution is less costly than Amazon SageMaker."
"The price of DataRobot is good because if you take the price of the solution which is approximately $65,000, it is less than a data scientist. There are very few data scientists available."
"We dropped the plan to use DataRobot, because we found the pricing to be on the higher sise. We liked DataRobot a lot, but due to the pricing, we dropped that idea."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
831,265 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Educational Organization
14%
Computer Software Company
11%
Manufacturing Company
9%
Educational Organization
25%
Financial Services Firm
12%
Computer Software Company
8%
Manufacturing Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
Before deploying SageMaker, I reviewed the pricing, especially for notebook instances. The cost for small to medium instances is not very high.
What needs improvement with DataRobot?
There are some performance issues when it comes to improvements. They also offer storage-related services compared to other tools like Admin, Azure, or AWS. It is easy to plug and play. Third-party...
What is your primary use case for DataRobot?
We work on AI and ML use cases related to technology and IT.
What advice do you have for others considering DataRobot?
Based on your similar requirements, V10.0 has very cool features related to AI Generation. I would suggest the team, too. This is very good for data scientists or people who don't want to code. Eve...
 

Also Known As

AWS SageMaker, SageMaker
No data available
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Harmoney, Zidisha, ONE Marketing, DonorBureau, Trupanion, Avant
Find out what your peers are saying about Amazon SageMaker vs. DataRobot and other solutions. Updated: January 2025.
831,265 professionals have used our research since 2012.