Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Hugging Face comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in AI Development Platforms
5th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
36
Ranking in other categories
Data Science Platforms (3rd)
Hugging Face
Ranking in AI Development Platforms
4th
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
12
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of April 2025, in the AI Development Platforms category, the mindshare of Amazon SageMaker is 5.6%, down from 8.6% compared to the previous year. The mindshare of Hugging Face is 13.5%, up from 7.6% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Hemant Paralkar - PeerSpot reviewer
Improves team collaboration with advanced feature sharing but needs a better user experience
Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background. Additionally, dealing with frequent UI updates can be challenging, especially for infrastructure architects like myself. It involves effort to migrate to new UIs, making the updates not seamless. User auditing requires enhancements as tracking operations performed by users can be difficult due to dynamic IP validation and role propagation.
SwaminathanSubramanian - PeerSpot reviewer
Versatility empowers AI concept development despite the multi-GPU challenge
Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently. Organizations are apprehensive about investing in multi-GPU setups. Additionally, data cleanup is a challenge that needs to be resolved, as data must be mature and pristine.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The tool makes our ML model development a bit more efficient because everything is in one environment."
"They are doing a good job of evolving."
"The most valuable features include the ML operations that allow for designing, deploying, testing, and evaluating models."
"The most valuable feature of Amazon SageMaker is SageMaker Studio."
"I recommend SageMaker for ML projects if you need to build models from scratch."
"Amazon SageMaker is highly valuable for managing ML workloads. It connects to AWS cloud resources, making it easy to deploy algorithms and collaborate using tools like GitLab. It offers a wide range of Python libraries and other necessary tools for modelling and algorithms."
"The Autopilot feature is really good because it's helpful for people who don't have much experience with coding or data pipelines. When we suggest SageMaker to clients, they don't have to go through all the steps manually. They can leverage Autopilot to choose variables, run experiments, and monitor costs. The results are also pretty accurate."
"The intuitive interface and streamlined user experience make it easy to navigate and set up various tools like Visual Studio Code or Jupyter Notebook."
"My preferred aspects are natural language processing and question-answering."
"The solution is easy to use compared to other frameworks like PyTorch and TensorFlow."
"The tool's most valuable feature is that it shows trending models. All the new models, even Google's demo models, appear at the top. You can find all the open-source models in one place. You can use them directly and easily find their documentation. It's very simple to find documentation and write code. If you want to work with AI and machine learning, Hugging Face is a perfect place to start."
"I like that Hugging Face is versatile in the way it has been developed."
"I appreciate the versatility and the fact that it has generalized many models."
"The product is reliable."
"It is stable."
"The tool's most valuable feature is that it's open-source and has hundreds of packages already available. This makes it quite helpful for creating our LLMs."
 

Cons

"There are other better solutions for large data, such as Databricks."
"The payment and monitoring metrics are a bit confusing not only for Amazon SageMaker but also for the range of other products that fall under AWS, especially for a new user of the product."
"The entry point can be a bit difficult. Having all documentation easily accessible on the front page of SageMaker would be a great improvement."
"Scalability to handle big data can be improved by making integration with networks such as Hadoop and Apache Spark easier."
"The pricing of the solution is an issue...In SageMaker, monitoring could be improved by supporting more data types other than JSON and CSV."
"When starting a new session, the waiting time can be quite long, ranging from two to five minutes."
"One area for improvement is the pricing, which can be quite high."
"Amazon SageMaker can make it simpler to manage the data flow from start to finish, such as by integrating data, usingthe machine, and deploying models. This process could be more user-friendly compared to other tools. I would also like to improve integration with Bedrock and the LLM connection for AWS."
"Access to the models and datasets could be improved."
"Initially, I faced issues with the solution's configuration."
"It can incorporate AI into its services."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently."
"Access to the models and datasets could be improved. Many interesting ones are restricted."
"Most people upload their pre-trained models on Hugging Face, but more details should be added about the models."
"The solution must provide an efficient LLM."
 

Pricing and Cost Advice

"The solution is relatively cheaper."
"Amazon SageMaker is a very expensive product."
"The tool's pricing is reasonable."
"The support costs are 10% of the Amazon fees and it comes by default."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a six out of ten."
"SageMaker is worth the money for our use case."
"The pricing is complicated as it is based on what kind of machines you are using, the type of storage, and the kind of computation."
"On average, customers pay about $300,000 USD per month."
"So, it's requires expensive machines to open services or open LLM models."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"The solution is open source."
"Hugging Face is an open-source solution."
"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"We do not have to pay for the product."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
848,253 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
19%
Educational Organization
11%
Computer Software Company
11%
Manufacturing Company
9%
Computer Software Company
11%
Financial Services Firm
11%
University
10%
Manufacturing Company
10%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
Before deploying SageMaker, I reviewed the pricing, especially for notebook instances. The cost for small to medium instances is not very high.
What do you like most about Hugging Face?
My preferred aspects are natural language processing and question-answering.
What needs improvement with Hugging Face?
Access to the models and datasets could be improved. Many interesting ones are restricted. It would be great if they provided access for students or non-professionals who just want to test things.
What is your primary use case for Hugging Face?
This is a simple personal project, non-commercial. As a student, that's all I do.
 

Comparisons

 

Also Known As

AWS SageMaker, SageMaker
No data available
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Information Not Available
Find out what your peers are saying about Amazon SageMaker vs. Hugging Face and other solutions. Updated: March 2025.
848,253 professionals have used our research since 2012.