Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Hugging Face comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in AI Development Platforms
4th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
36
Ranking in other categories
Data Science Platforms (3rd)
Hugging Face
Ranking in AI Development Platforms
5th
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
12
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of February 2025, in the AI Development Platforms category, the mindshare of Amazon SageMaker is 6.1%, down from 8.7% compared to the previous year. The mindshare of Hugging Face is 13.2%, up from 6.6% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Hemant Paralkar - PeerSpot reviewer
Improves team collaboration with advanced feature sharing but needs a better user experience
Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background. Additionally, dealing with frequent UI updates can be challenging, especially for infrastructure architects like myself. It involves effort to migrate to new UIs, making the updates not seamless. User auditing requires enhancements as tracking operations performed by users can be difficult due to dynamic IP validation and role propagation.
SwaminathanSubramanian - PeerSpot reviewer
Versatility empowers AI concept development despite the multi-GPU challenge
Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently. Organizations are apprehensive about investing in multi-GPU setups. Additionally, data cleanup is a challenge that needs to be resolved, as data must be mature and pristine.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable feature of Amazon SageMaker is SageMaker Studio."
"The most valuable feature of Amazon SageMaker for me is the model deployment service."
"They are doing a good job of evolving."
"The solution's ability to improve work at my organization stems from the ensemble model and a combination of various models it provides."
"I have contacted the solution's technical support, and they were really good. I rate the technical support a ten out of ten."
"The few projects we have done have been promising."
"The product aggregates everything we need to build and deploy machine learning models in one place."
"The support is very good with well-trained engineers whose training curriculum is rigorous."
"I like that Hugging Face is versatile in the way it has been developed."
"It is stable."
"The product is reliable."
"There are numerous libraries available, and the documentation is rich and step-by-step, helping us understand which model to use in particular conditions."
"Hugging Face provides open-source models, making it the best open-source and reliable solution."
"The solution is easy to use compared to other frameworks like PyTorch and TensorFlow."
"My preferred aspects are natural language processing and question-answering."
"I would rate this product nine out of ten."
 

Cons

"Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background."
"I had to create custom templates for labeling multi-data sets, such as text and images, which was time-consuming."
"The product must provide better documentation."
"The documentation must be made clearer and more user-friendly."
"Amazon SageMaker can make it simpler to manage the data flow from start to finish, such as by integrating data, usingthe machine, and deploying models. This process could be more user-friendly compared to other tools. I would also like to improve integration with Bedrock and the LLM connection for AWS."
"The entry point can be a bit difficult. Having all documentation easily accessible on the front page of SageMaker would be a great improvement."
"SageMaker would be improved with the addition of reporting services."
"Lacking in some machine learning pipelines."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging."
"The area that needs improvement would be the organization of the materials. It could be clearer and more systematic. It would be good if the layout was clear and we could search the models easily."
"I've worked on three projects using Hugging Face, and only once did we encounter a problem with the code. We had to use another open-source embedding from OpenAI to resolve it. Our team has three members: me, my colleague, and a team leader. We looked at the problem and resolved it."
"Most people upload their pre-trained models on Hugging Face, but more details should be added about the models."
"Initially, I faced issues with the solution's configuration."
"I believe Hugging Face has some room for improvement. There are some security issues. They provide code, but API tokens aren't indicated. Also, the documentation for particular models could use more explanation. But I think these things are improving daily. The main change I'd like to see is making the deployment of inference endpoints more customizable for users."
"Hugging Face could improve by implementing a search engine or chat bot feature similar to ChatGPT."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently."
 

Pricing and Cost Advice

"The pricing is comparable."
"The tool's pricing is reasonable."
"The product is expensive."
"The pricing is complicated as it is based on what kind of machines you are using, the type of storage, and the kind of computation."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a six out of ten."
"The cost offers a pay-as-you-go pricing model. It depends on the instance that you do."
"Databricks solution is less costly than Amazon SageMaker."
"I rate the pricing a five on a scale of one to ten, where one is the lowest price, and ten is the highest price. The solution is priced reasonably. There is no additional cost to be paid in excess of the standard licensing fees."
"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"We do not have to pay for the product."
"The solution is open source."
"So, it's requires expensive machines to open services or open LLM models."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"Hugging Face is an open-source solution."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
838,533 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Educational Organization
14%
Computer Software Company
11%
Manufacturing Company
9%
Computer Software Company
10%
Manufacturing Company
10%
Financial Services Firm
10%
University
10%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
Before deploying SageMaker, I reviewed the pricing, especially for notebook instances. The cost for small to medium instances is not very high.
What do you like most about Hugging Face?
My preferred aspects are natural language processing and question-answering.
What needs improvement with Hugging Face?
Access to the models and datasets could be improved. Many interesting ones are restricted. It would be great if they provided access for students or non-professionals who just want to test things.
What is your primary use case for Hugging Face?
This is a simple personal project, non-commercial. As a student, that's all I do.
 

Comparisons

 

Also Known As

AWS SageMaker, SageMaker
No data available
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Information Not Available
Find out what your peers are saying about Amazon SageMaker vs. Hugging Face and other solutions. Updated: January 2025.
838,533 professionals have used our research since 2012.