Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Hugging Face comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in AI Development Platforms
4th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
36
Ranking in other categories
Data Science Platforms (3rd)
Hugging Face
Ranking in AI Development Platforms
5th
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
10
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2025, in the AI Development Platforms category, the mindshare of Amazon SageMaker is 6.9%, down from 8.8% compared to the previous year. The mindshare of Hugging Face is 13.2%, up from 6.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Hemant Paralkar - PeerSpot reviewer
Improves team collaboration with advanced feature sharing but needs a better user experience
Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background. Additionally, dealing with frequent UI updates can be challenging, especially for infrastructure architects like myself. It involves effort to migrate to new UIs, making the updates not seamless. User auditing requires enhancements as tracking operations performed by users can be difficult due to dynamic IP validation and role propagation.
AshishKumar11 - PeerSpot reviewer
Open-sourced, reliable, and enables organizations to finetune data for business requirements
Hugging Face is a website that provides various open-source models. We use them to finetune models for our business. It is just like ChatGPT, but ChatGPT has paid sources. If we have to call an API, we must pay for it. However, Hugging Face has various open-source models like Llama 2 and Llama 3…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The product aggregates everything we need to build and deploy machine learning models in one place."
"The most valuable features in Amazon SageMaker are its AutoML, feature store, and automated hyperparameter tuning capabilities."
"I appreciate the ease of use in Amazon SageMaker."
"The feature I found most valuable is the data catalog, as it assists with the lineage of data through the preparation pipeline."
"The Autopilot feature is really good because it's helpful for people who don't have much experience with coding or data pipelines. When we suggest SageMaker to clients, they don't have to go through all the steps manually. They can leverage Autopilot to choose variables, run experiments, and monitor costs. The results are also pretty accurate."
"The intuitive interface and streamlined user experience make it easy to navigate and set up various tools like Visual Studio Code or Jupyter Notebook."
"The most valuable features include the ML operations that allow for designing, deploying, testing, and evaluating models."
"SageMaker supports building, training, and deploying AI models from scratch, which is crucial for my ML project."
"My preferred aspects are natural language processing and question-answering."
"Hugging Face provides open-source models, making it the best open-source and reliable solution."
"There are numerous libraries available, and the documentation is rich and step-by-step, helping us understand which model to use in particular conditions."
"It is stable."
"The product is reliable."
"The solution is easy to use compared to other frameworks like PyTorch and TensorFlow."
"The tool's most valuable feature is that it shows trending models. All the new models, even Google's demo models, appear at the top. You can find all the open-source models in one place. You can use them directly and easily find their documentation. It's very simple to find documentation and write code. If you want to work with AI and machine learning, Hugging Face is a perfect place to start."
"What I find the most valuable about Hugging Face is that I can check all the models on it and see which ones have the best performance without using another platform."
 

Cons

"Lacking in some machine learning pipelines."
"The solution requires a lot of data to train the model."
"The main challenge with Amazon SageMaker is the integrations."
"The platform could be more accessible to users with basic coding skills, making it more intuitive and easier for beginners to use comfortably."
"The pricing of the solution is an issue...In SageMaker, monitoring could be improved by supporting more data types other than JSON and CSV."
"The solution needs to be cheaper since it now charges per document for extraction."
"The training modules could be enhanced. We had to take in-person training to fully understand SageMaker, and while the trainers were great, I think more comprehensive online modules would be helpful."
"The payment and monitoring metrics are a bit confusing not only for Amazon SageMaker but also for the range of other products that fall under AWS, especially for a new user of the product."
"I believe Hugging Face has some room for improvement. There are some security issues. They provide code, but API tokens aren't indicated. Also, the documentation for particular models could use more explanation. But I think these things are improving daily. The main change I'd like to see is making the deployment of inference endpoints more customizable for users."
"It can incorporate AI into its services."
"The solution must provide an efficient LLM."
"Hugging Face could improve by implementing a search engine or chat bot feature similar to ChatGPT."
"Initially, I faced issues with the solution's configuration."
"Implementing a cloud system to showcase historical data would be beneficial."
"I've worked on three projects using Hugging Face, and only once did we encounter a problem with the code. We had to use another open-source embedding from OpenAI to resolve it. Our team has three members: me, my colleague, and a team leader. We looked at the problem and resolved it."
"The area that needs improvement would be the organization of the materials. It could be clearer and more systematic. It would be good if the layout was clear and we could search the models easily."
 

Pricing and Cost Advice

"The pricing could be better, especially for querying. The per-query model feels expensive."
"The support costs are 10% of the Amazon fees and it comes by default."
"Amazon SageMaker is a very expensive product."
"I rate the pricing a five on a scale of one to ten, where one is the lowest price, and ten is the highest price. The solution is priced reasonably. There is no additional cost to be paid in excess of the standard licensing fees."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a six out of ten."
"The pricing is comparable."
"The tool's pricing is reasonable."
"The cost offers a pay-as-you-go pricing model. It depends on the instance that you do."
"The solution is open source."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"We do not have to pay for the product."
"So, it's requires expensive machines to open services or open LLM models."
"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"Hugging Face is an open-source solution."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
831,071 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Educational Organization
14%
Computer Software Company
11%
Manufacturing Company
9%
Manufacturing Company
11%
Computer Software Company
11%
University
10%
Financial Services Firm
10%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
Before deploying SageMaker, I reviewed the pricing, especially for notebook instances. The cost for small to medium instances is not very high.
What do you like most about Hugging Face?
My preferred aspects are natural language processing and question-answering.
What needs improvement with Hugging Face?
Hugging Face could improve by implementing a search engine or chat bot feature similar to ChatGPT. This would aid developers in easily finding how to fine-tune models with specific data or get mode...
What is your primary use case for Hugging Face?
I use Hugging Face primarily to work with open LLM models. I recently started using the open LOM models and also use embedding models. I use these models to train custom data and monitor our deskto...
 

Also Known As

AWS SageMaker, SageMaker
No data available
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Information Not Available
Find out what your peers are saying about Amazon SageMaker vs. Hugging Face and other solutions. Updated: December 2024.
831,071 professionals have used our research since 2012.