Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Dataiku comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
3rd
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
36
Ranking in other categories
AI Development Platforms (4th)
Dataiku
Ranking in Data Science Platforms
7th
Average Rating
8.0
Reviews Sentiment
7.2
Number of Reviews
10
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of February 2025, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 7.6%, down from 9.9% compared to the previous year. The mindshare of Dataiku is 12.4%, up from 7.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Hemant Paralkar - PeerSpot reviewer
Improves team collaboration with advanced feature sharing but needs a better user experience
Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background. Additionally, dealing with frequent UI updates can be challenging, especially for infrastructure architects like myself. It involves effort to migrate to new UIs, making the updates not seamless. User auditing requires enhancements as tracking operations performed by users can be difficult due to dynamic IP validation and role propagation.
RichardXu - PeerSpot reviewer
The platform organizes workflows visually and efficiently
One of the valuable features of Dataiku is the workflow capability. It allows us to organize a workflow efficiently. The platform has a visual interface, making it much easier for educated professionals to organize their work. This feature is useful because it simplifies tasks and eliminates the need for a data scientist. If you are knowledgeable about AI, you can directly write using primitive tools like Pantera flow, PyTorch, and Scikit-learn. However, Dataiku makes this process much easier.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most tool's valuable feature, in my experience, is hyperparameter tuning. It allows us to test different parameters for the same model in parallel, which helps us quickly identify the configuration that yields the highest accuracy. This parallel computing capability saves us a lot of time."
"The tool has made client management easier where patients need to upload their health records and we can use the tool to understand details on treatment date, amount, etc."
"Amazon SageMaker is highly valuable for managing ML workloads. It connects to AWS cloud resources, making it easy to deploy algorithms and collaborate using tools like GitLab. It offers a wide range of Python libraries and other necessary tools for modelling and algorithms."
"Allows you to create API endpoints."
"The technical support from AWS is excellent."
"The intuitive interface and streamlined user experience make it easy to navigate and set up various tools like Visual Studio Code or Jupyter Notebook."
"We've had no problems with SageMaker's stability."
"I recommend SageMaker for ML projects if you need to build models from scratch."
"Cloud-based process run helps in not keeping the systems on while processes are running."
"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"One of the valuable features of Dataiku is the workflow capability."
"I rate the overall product as eight out of ten."
"If many teams are collaborating and sharing Jupyter notebooks, it's very useful."
"The solution is quite stable."
"The most valuable feature of this solution is that it is one tool that can do everything, and you have the ability to very easily push your design to prediction."
"Traceability is vital since I manage many cohorts, and collaboration is key as I have multiple engineers substituting for one another."
 

Cons

"The training modules could be enhanced. We had to take in-person training to fully understand SageMaker, and while the trainers were great, I think more comprehensive online modules would be helpful."
"The pricing of the solution is an issue...In SageMaker, monitoring could be improved by supporting more data types other than JSON and CSV."
"The product must provide better documentation."
"Scalability to handle big data can be improved by making integration with networks such as Hadoop and Apache Spark easier."
"The main challenge with Amazon SageMaker is the integrations."
"Amazon SageMaker can make it simpler to manage the data flow from start to finish, such as by integrating data, usingthe machine, and deploying models. This process could be more user-friendly compared to other tools. I would also like to improve integration with Bedrock and the LLM connection for AWS."
"I had to create custom templates for labeling multi-data sets, such as text and images, which was time-consuming."
"The dashboard could be improved by including more features and providing more information about deployed models, their drift, performance, scaling, and customization options."
"The interface for the web app can be a bit difficult. It needs to have better capabilities, at least for developers who like to code. This is due to the fact that everything is enabled in a single window with different tabs. For them to actually develop and do the concurrent testing that needs to be done, it takes a bit of time. That is one improvement that I would like to see - from a web app developer perspective."
"I think it would help if Data Science Studio added some more features and improved the data model."
"Server up-time needs to be improved. Also, query engines like Spark and Hive need to be more stable."
"The license is very expensive."
"The license is very expensive. It would be great to have an intermediate license for basic treatments that do not require extensive experience."
"We still encounter some integration issues."
"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"I find that it is a little slow during use. It takes more time than I would expect for operations to complete."
 

Pricing and Cost Advice

"SageMaker is worth the money for our use case."
"You don't pay for Sagemaker. You only pay for the compute instances in your storage."
"The product is expensive."
"The support costs are 10% of the Amazon fees and it comes by default."
"The cost offers a pay-as-you-go pricing model. It depends on the instance that you do."
"The solution is relatively cheaper."
"There is no license required for the solution since you can use it on demand."
"Amazon SageMaker is a very expensive product."
"Pricing is pretty steep. Dataiku is also not that cheap."
"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
838,533 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Educational Organization
14%
Computer Software Company
11%
Manufacturing Company
9%
Financial Services Firm
18%
Educational Organization
15%
Manufacturing Company
9%
Computer Software Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
Before deploying SageMaker, I reviewed the pricing, especially for notebook instances. The cost for small to medium instances is not very high.
What needs improvement with Dataiku Data Science Studio?
I need more experience in the sector, which is health. The license is very expensive. It would be great to have an intermediate license for basic treatments that do not require extensive experience.
What is your primary use case for Dataiku Data Science Studio?
I use that IQ since I am preparing cohorts for health investment research.
 

Comparisons

 

Also Known As

AWS SageMaker, SageMaker
Dataiku DSS
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Find out what your peers are saying about Amazon SageMaker vs. Dataiku and other solutions. Updated: January 2025.
838,533 professionals have used our research since 2012.