Try our new research platform with insights from 80,000+ expert users

Dataiku vs KNIME comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Dataiku
Ranking in Data Science Platforms
7th
Average Rating
8.0
Reviews Sentiment
7.2
Number of Reviews
9
Ranking in other categories
No ranking in other categories
KNIME
Ranking in Data Science Platforms
2nd
Average Rating
8.0
Reviews Sentiment
7.1
Number of Reviews
59
Ranking in other categories
Data Mining (1st)
 

Mindshare comparison

As of January 2025, in the Data Science Platforms category, the mindshare of Dataiku is 12.1%, up from 7.8% compared to the previous year. The mindshare of KNIME is 11.3%, up from 9.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Sabrine Bendimerad - PeerSpot reviewer
Saves a lot of time because I can quickly handle all the data preparation tasks and concentrate on building my machine learning algorithms
One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated. While it was theoretically possible to use GitHub with Dataiku, in practice, it was difficult to manage our code effectively and push it from Dataiku to GitHub. Another limitation was its ability to handle different types of data. While Dataiku is powerful for working with structured data, like regular or geospatial data, it struggled with more complex data types such as text and image. In addition to the challenges with GitHub integration, the limited support for diverse data types was another feature lacking at that time.
Shyam_Sridhar - PeerSpot reviewer
Good for data analysis to model prediction and application but data load limitations
KNIME is very easy to handle and use. Anyone can use it, and it's easy to learn. You don't need a specific class. They're very good at model prediction. It has got everything. From data analysis to model prediction and application, it's very good. I only use the free community edition, not the enterprise one. I feel KNIME is really good. I haven't tried any other tool or platform yet, but KNIME is pretty good. The workflow is great. You drag and drop, and then you have the data explorer and charts that give results. The execution is also good – it's easy to identify where your model has gone wrong. It shows you the exact point of error within the workflow, so you don't have to execute the entire workflow to find it. For example, if your workflow has ten steps and the error is in the sixth step, it will show you the error at that step. You don't have to worry about the first five steps. The Data Explorer is very good, and the charts are great too. The accuracy charts for different models, like decision tree, K3, Naive Bayes, are all very good. KNIME is great at reporting, whether it's structured or unstructured data. These are all very good features.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution is quite stable."
"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"The most valuable feature is the set of visual data preparation tools."
"Data Science Studio's data science model is very useful."
"If many teams are collaborating and sharing Jupyter notebooks, it's very useful."
"Cloud-based process run helps in not keeping the systems on while processes are running."
"Traceability is vital since I manage many cohorts, and collaboration is key as I have multiple engineers substituting for one another."
"I rate the overall product as eight out of ten."
"This solution is easy to use and especially good at data preparation and wrapping."
"Easy to use, stable, and powerful."
"It allows for a user-friendly approach where you can simply drag and drop elements to create your model, which is a convenient and effective idea."
"The most useful features are the readily available extensions that speed up the work."
"The hardest part is keeping a tidy workspace because of the many nodes involved. When teaching, it would be helpful if there was more emphasis on how to group nodes effectively. For example, turning frequently used nodes into a single component can simplify things."
"This open-source product can compete with category leaders in ELT software."
"One of the greatest advantages of KNIME is that it can be used by those without any coding experience. those with no coding background can use it."
"Overall KNIME serves its purpose and does a good job."
 

Cons

"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"I find that it is a little slow during use. It takes more time than I would expect for operations to complete."
"There were stability issues: 1) SQL operations, such as partitioning, had bugs and showed wrong results. 2) Due to server downtime, scheduled processes used to fail. 3) Access to project folders was compromised (privacy issue) with wrong people getting access to confidential project folders."
"Server up-time needs to be improved. Also, query engines like Spark and Hive need to be more stable."
"Dataiku still needs some coding, and that could be a difference where business data scientists would go for DataRobot more than Dataiku."
"The license is very expensive. It would be great to have an intermediate license for basic treatments that do not require extensive experience."
"I think it would help if Data Science Studio added some more features and improved the data model."
"The license is very expensive."
"They should look at other vendors like Alteryx that are more user friendly and modern."
"​The data visualization part is the area most in need of improvement."
"KNIME's licensing and data management aren't as straightforward relative to Alteryx. Alteryx's tools are more sophisticated, so you need fewer to use it compared to KNIME. I think tab implementation could be easier, too."
"It's difficult to pinpoint one single feature because KNIME has so many. For starters, it's very easy to learn. You can get started with just a one-hour video. The drag-and-drop interface makes it user-friendly. For example, if you want to read an Excel file, drag the "read Excel file" node from the repository, configure it by specifying the file location, and run it. This gives you a table with all your data."
"KNIME needs to provide more documentation and training materials, including webinars or online seminars."
"KNIME doesn't handle large datasets or a high number of records well."
"I'd like something that would make it easier to connect/parse websites, although I will fully admit that I'm not as proficient in KNIME as I would like to be, so it could be I'm just missing something."
"If they had a more structured training model it would be very helpful."
 

Pricing and Cost Advice

"Pricing is pretty steep. Dataiku is also not that cheap."
"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
"KNIME is free and open source."
"It is free of cost. It is GNU licensed."
"KNIME is an open-source tool, so it's free to use."
"KNIME offers a free version"
"KNIME desktop is free, which is great for analytics teams. Server is well priced, depending on how much support is required."
"I use the tool's free version."
"We're using the free academic license just locally. I went for KNIME because they have a free academic license."
"The price of KNIME is quite reasonable and the designer tool can be used free of charge."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
831,158 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Educational Organization
16%
Manufacturing Company
9%
Computer Software Company
8%
Financial Services Firm
13%
Manufacturing Company
12%
Computer Software Company
9%
Educational Organization
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What needs improvement with Dataiku Data Science Studio?
One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated. While it was theoretically possible to us...
What is your primary use case for Dataiku Data Science Studio?
We use the solution for data science and machine learning.
What do you like most about KNIME?
Since KNIME is a no-code platform, it is easy to work with.
What is your experience regarding pricing and costs for KNIME?
I rate the product’s pricing a seven out of ten, where one is cheap and ten is expensive.
What needs improvement with KNIME?
For graphics, the interface is a little confusing. So, this is a point that could be improved.
 

Comparisons

 

Also Known As

Dataiku DSS
KNIME Analytics Platform
 

Learn More

 

Overview

 

Sample Customers

BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Infocom Corporation, Dymatrix Consulting Group, Soluzione Informatiche, MMI Agency, Estanislao Training and Solutions, Vialis AG
Find out what your peers are saying about Dataiku vs. KNIME and other solutions. Updated: January 2025.
831,158 professionals have used our research since 2012.