Try our new research platform with insights from 80,000+ expert users

Databricks vs Domino Data Science Platform comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Databricks
Ranking in Data Science Platforms
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
88
Ranking in other categories
Streaming Analytics (1st)
Domino Data Science Platform
Ranking in Data Science Platforms
15th
Average Rating
7.6
Reviews Sentiment
6.7
Number of Reviews
2
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2025, in the Data Science Platforms category, the mindshare of Databricks is 19.1%, up from 18.5% compared to the previous year. The mindshare of Domino Data Science Platform is 2.6%, down from 2.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Parag Bhosale - PeerSpot reviewer
Integrating engineering and learning, but cost challenges arise with cluster management
We often use a single cluster to ingest Databricks, which Databricks doesn't recommend. They suggest using a no-cluster solution like job clusters. This can be overwhelming for us because we started smaller. We prefer using a small to mid-sized cluster for many jobs to keep costs low, but this sometimes doesn't support our operations properly. We need to stay in sync with the DVR versions, and migrations can pose challenges. For example, issues arose when we moved a cluster from a previous version to the latest one. We could use their job clusters, however, that increases costs, which is challenging for us as a startup. Maintaining this infrastructure can be a headache.
AS
Accelerated machine learning model development with seamless deployment
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar to using Git. Each user operates on their own equivalent of a branch or fork, and once finished, they…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Databricks integrates well with other solutions."
"The setup was straightforward."
"The initial setup phase of Databricks was good."
"The solution is very easy to use."
"We like that this solution can handle a wide variety and velocity of data engineering, either in batch mode or real-time."
"It's easy to increase performance as required."
"Databricks' Lakehouse architecture has been most useful for us. The data governance has been absolutely efficient in between other kinds of solutions."
"Having one solution for everything, from data engineering to machine learning, is beneficial since everything comes under one hood."
"The workspaces, which are like wrappers of Docker containers, made it easy to start development environments using Domino."
"The scalability of the solution is good; I'd rate it four out of five."
 

Cons

"There are no direct connectors — they are very limited."
"Databricks can improve by making the documentation better."
"The product cannot be integrated with a popular coding IDE."
"It would be very helpful if Databricks could integrate with platforms in addition to Azure."
"The solution could be improved by integrating it with data packets. Right now, the load tables provide a function, like team collaboration. Still, it's unclear as to if there's a function to create different branches and/or more branches. Our team had used data packets before, however, I feel it's difficult to integrate the current with the previous data packets."
"Implementation of Databricks is still very code heavy."
"Databricks would benefit from enhanced metrics and tighter integration with Azure's diagnostics."
"Databricks' technical support takes a while to respond and could be improved."
"The deployment of large language models (LLMs) could be improved."
"The predictive analysis feature needs improvement."
 

Pricing and Cost Advice

"I rate the price of Databricks as eight out of ten."
"I am based in South Africa, where it is expensive adapting to the cloud, and then there is the price for the tool itself."
"The solution is affordable."
"The cost for Databricks depends on the use case. I work on it as a consultant, so I'm using the client's Databricks, so it depends on how big the client is."
"Databricks uses a price-per-use model, where you can use as much compute as you need."
"The solution requires a subscription."
"The pricing depends on the usage itself."
"The cost is around $600,000 for 50 users."
Information not available
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
831,997 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
17%
Computer Software Company
11%
Manufacturing Company
9%
Healthcare Company
6%
Financial Services Firm
34%
Manufacturing Company
11%
Insurance Company
9%
Computer Software Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What needs improvement with Domino Data Science Platform?
The deployment of large language models (LLMs) could be improved. Currently, Domino provides a simple server that cannot handle big deployments, which is not suitable for LLMs.
What is your primary use case for Domino Data Science Platform?
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar...
What advice do you have for others considering Domino Data Science Platform?
It's important to have a DevOps team well-versed with cloud-native solutions to manage Domino effectively. Relying solely on data scientists might not be sufficient. I'd rate the solution eight out...
 

Also Known As

Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
Domino Data Lab Platform
 

Interactive Demo

Demo not available
 

Overview

 

Sample Customers

Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Allstate, GSK, AstraZeneca, Federal Reserve, US Navy, Bristol Myers Squibb, Bayer, BNP Paribas, Moodys, New York Life
Find out what your peers are saying about Databricks vs. Domino Data Science Platform and other solutions. Updated: January 2025.
831,997 professionals have used our research since 2012.