Try our new research platform with insights from 80,000+ expert users

Cloudera DataFlow vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive Summary
 

Categories and Ranking

Cloudera DataFlow
Ranking in Streaming Analytics
14th
Average Rating
7.2
Number of Reviews
4
Ranking in other categories
No ranking in other categories
Spring Cloud Data Flow
Ranking in Streaming Analytics
10th
Average Rating
7.8
Number of Reviews
8
Ranking in other categories
Data Integration (22nd)
 

Mindshare comparison

As of November 2024, in the Streaming Analytics category, the mindshare of Cloudera DataFlow is 1.4%, down from 1.6% compared to the previous year. The mindshare of Spring Cloud Data Flow is 5.0%, up from 4.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Júlio César Gomes Fonseca - PeerSpot reviewer
Jun 23, 2023
A stable solution that helps develop quality modules but needs to improve its programming language
Sometimes I need this workflow to make my modules, not for campaign preparation. It is solely focused on developing quality modules for direct telecommunication companies In Cloudera DataFlow, I can't say which is the most valuable feature because we use all modules. We need to compare each…
NitinGoyal - PeerSpot reviewer
Aug 15, 2024
Has a plug-and-play model and provides good robustness and scalability
The solution's community support could be improved. I don't know why the Spring Cloud Data Flow community is not very strong. Community support is very limited whenever you face any problem or are stuck somewhere. I'm not sure whether it has improved in the last six months because this pipeline was set up almost two years ago. I struggled with that a lot. For example, there was limited support whenever I got an exception and sought help from Stack Overflow or different forums. Interacting with Kubernetes needs a few certificates. You need to define all the certificates within your application. With the help of those certificates, your Java application or Spring Cloud Data Flow can interact with Kubernetes. I faced a lot of hurdles while placing those certificates. Despite following the official documentation to define all the replicas, readiness, and liveliness probes within the Spring Cloud Data Flow application, it was not working. So, I had to troubleshoot while digging in and debugging the internals of Spring Cloud Data Flow at that time. It was just a configuration mismatch, and I was doing nothing weird. There was a small spelling difference between how Spring Cloud Data Flow was expecting it and how I passed it. I was just following the official documentation.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"This solution is very scalable and robust."
"The initial setup was not so difficult"
"The most effective features are data management and analytics."
"DataFlow's performance is okay."
"The dashboards in Spring Cloud Dataflow are quite valuable."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"The product is very user-friendly."
"The most valuable feature is real-time streaming."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
 

Cons

"It is not easy to use the R language. Though I don't know if it's possible, I believe it is possible, but it is not the best language for machine learning."
"Although their workflow is pretty neat, it still requires a lot of transformation coding; especially when it comes to Python and other demanding programming languages."
"It's an outdated legacy product that doesn't meet the needs of modern data analysts and scientists."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"The solution's community support could be improved."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
"I would improve the dashboard features as they are not very user-friendly."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
 

Pricing and Cost Advice

"DataFlow isn't expensive, but its value for money isn't great."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
"This is an open-source product that can be used free of charge."
"The solution provides value for money, and we are currently using its community edition."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
814,649 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
19%
Financial Services Firm
16%
University
11%
Manufacturing Company
8%
Financial Services Firm
29%
Computer Software Company
16%
Manufacturing Company
7%
Retailer
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Cloudera DataFlow?
The most effective features are data management and analytics.
What is your primary use case for Cloudera DataFlow?
We use Cloudera DataFlow for stream analytics.
What needs improvement with Spring Cloud Data Flow?
I would improve the dashboard features as they are not very user-friendly. Another area for improvement is the documentation, as it is not very precise. There are limited resources available on Spr...
What is your primary use case for Spring Cloud Data Flow?
I am a developer using Spring Cloud Dataflow. We primarily use it to convert our applications from monolithic to microservices. The solution is used for scheduling tasks in a specific order and ens...
What advice do you have for others considering Spring Cloud Data Flow?
My advice would be to thoroughly review the documentation and understand if Spring Cloud Dataflow is the right solution for your application. For applications with only one or two microservices, it...
 

Also Known As

CDF, Hortonworks DataFlow, HDF
No data available
 

Learn More

 

Overview

 

Sample Customers

Clearsense
Information Not Available
Find out what your peers are saying about Cloudera DataFlow vs. Spring Cloud Data Flow and other solutions. Updated: October 2024.
814,649 professionals have used our research since 2012.