Try our new research platform with insights from 80,000+ expert users

Databricks vs SAS Enterprise Miner comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Databricks
Ranking in Data Science Platforms
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
92
Ranking in other categories
Cloud Data Warehouse (9th), Data Management Platforms (DMP) (5th), Streaming Analytics (1st)
SAS Enterprise Miner
Ranking in Data Science Platforms
24th
Average Rating
7.6
Reviews Sentiment
6.2
Number of Reviews
13
Ranking in other categories
Data Mining (7th)
 

Mindshare comparison

As of February 2026, in the Data Science Platforms category, the mindshare of Databricks is 9.3%, down from 18.8% compared to the previous year. The mindshare of SAS Enterprise Miner is 1.6%, up from 0.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Databricks9.3%
SAS Enterprise Miner1.6%
Other89.1%
Data Science Platforms
 

Featured Reviews

SimonRobinson - PeerSpot reviewer
Governance And Engagement Lead
Improved data governance has enabled sensitive data tracking but cost management still needs work
I believe we could improve Databricks integration with cloud service providers. The impact of our current integration has not been particularly good, and it's becoming very expensive for us. The inefficiencies in our implementation, such as not shutting down warehouses when they're not in use or reserving the right number of credits, have led to increased costs. We made several beginner mistakes, such as not taking advantage of incremental loading and running overly complicated queries all the time. We should be using ETL tools to help us instead of doing it directly in Databricks. We need more experienced professionals to manage Databricks effectively, as it's not as forgiving as other platforms such as Snowflake. I think introducing customer repositories would facilitate easier implementation with Databricks.
reviewer1352853 - PeerSpot reviewer
Executive Head of analytics at a retailer with 5,001-10,000 employees
A stable product that is easy to deploy and can be used for structured and unstructured data mining
We use the solution for predictive analytics to do structured and unstructured data mining I like the way the product visually shows the data pipeline. The product must provide better integration with cloud-native technologies. I have been using the solution for 20 years. The product is very…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Databricks' capability to process data in parallel enhances data processing speed."
"I like how easy it is to share your notebook with others. You can give people permission to read or edit. I think that's a great feature. You can also pull in code from GitHub pretty easily. I didn't use it that often, but I think that's a cool feature."
"It's very simple to use Databricks Apache Spark."
"The setup was straightforward."
"Ability to work collaboratively without having to worry about the infrastructure."
"Databricks has a scalable Spark cluster creation process. The creators of Databricks are also the creators of Spark, and they are the industry leaders in terms of performance."
"Having one solution for everything, from data engineering to machine learning, is beneficial since everything comes under one hood."
"The time travel feature is the solution's most valuable aspect."
"I found the ease of use of the solution the most valuable. Additionally, other valuable features include: the user interface, power to extract data, compatibility with other technologies (specifically with PS400), and automation of several tasks."
"Good data management and analytics."
"The setup is straightforward. Deployment doesn't take more than 30 minutes."
"The most valuable feature is the decision tree creation."
"I like the way the product visually shows the data pipeline."
"The most valuable feature is that you can use multiple algorithms for creating models and then you can compare the results between them."
"Most of the features, especially on the data analysis tool pack, are really good. The way they do clustering and output is great. You can do fairly elaborate outputs. The results, the ensembles, all of these, are fantastic."
"he solution is scalable."
 

Cons

"It's not easy to use, and they need a better UI."
"I have had some issues with some of the Spark clusters running on Databricks, where the Spark runtime and clusters go up and down, which is an area for improvement."
"There would also be benefits if more options were available for workers, or the clusters of the two points."
"Databricks is an analytics platform. It should offer more data science. It should have more features for data scientists to work with."
"Scalability is an area with certain shortcomings. The solution's scalability needs improvement."
"I'm not the guy that I'm working with Databricks on a daily basis. I'm on the management team. However, my team tells me there are limitations with streaming events. The connectors work with a small set of platforms. For example, we can work with Kafka, but if we want to move to an event-driven solution from AWS, we cannot do it. We cannot connect to all the streaming analytics platforms, so we are limited in choosing the best one."
"The API deployment and model deployment are not easy on the Databricks side."
"The product could be improved regarding the delay when switching to higher-performing virtual machines compared to other platforms."
"The user interface of the solution needs improvement. It needs to be more visual."
"The ease of use can be improved. When you are new it seems a bit complex."
"The solution is very stable, but we do have some problems with discrepancies involving SAS not matching with the latest Java versions. It's not stable in cases where SAS tries to run on a different version because SAS doesn't connect with the latest Java update. Once a month we need to restart systems from scratch."
"The solution is much more complex than other options."
"The initial setup is challenging if doing it for the first time."
"The visualization of the models is not very attractive, so the graphics should be improved."
"Technical support could be improved."
"While I don't personally need tutorials, I can't say that it wouldn't be helpful for others to have some to help them navigate and operate the system."
 

Pricing and Cost Advice

"We implement this solution on behalf of our customers who have their own Azure subscription and they pay for Databricks themselves. The pricing is more expensive if you have large volumes of data."
"Databricks are not costly when compared with other solutions' prices."
"Databricks is a very expensive solution. Pricing is an area that could definitely be improved. They could provide a lower end compute and probably reduce the price."
"We only pay for the Azure compute behind the solution."
"The cost is around $600,000 for 50 users."
"The solution uses a pay-per-use model with an annual subscription fee or package. Typically this solution is used on a cloud platform, such as Azure or AWS, but more people are choosing Azure because the price is more reasonable."
"I would rate Databricks' pricing seven out of ten."
"The billing of Databricks can be difficult and should improve."
"The solution is expensive for an individual, but for an enterprise/institution (purchasing bulk licenses), it is not a high price for the use that will come from it."
"This solution is for large corporations because not everybody can afford it."
"The solution must improve its licensing models."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
881,384 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Manufacturing Company
9%
Computer Software Company
8%
Healthcare Company
6%
Financial Services Firm
24%
Educational Organization
11%
Manufacturing Company
10%
University
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business25
Midsize Enterprise12
Large Enterprise56
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise4
Large Enterprise7
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
Ask a question
Earn 20 points
 

Also Known As

Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
Enterprise Miner
 

Overview

 

Sample Customers

Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Generali Hellas, Gitanjali Group, Gloucestershire Constabulary, GS Home Shopping, HealthPartners, IAG New Zealand, iJET, Invacare
Find out what your peers are saying about Databricks vs. SAS Enterprise Miner and other solutions. Updated: December 2025.
881,384 professionals have used our research since 2012.