Try our new research platform with insights from 80,000+ expert users

Databricks vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
88
Ranking in other categories
Cloud Data Warehouse (7th), Data Science Platforms (1st)
Spring Cloud Data Flow
Ranking in Streaming Analytics
9th
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Data Integration (22nd)
 

Mindshare comparison

As of February 2025, in the Streaming Analytics category, the mindshare of Databricks is 14.1%, up from 9.9% compared to the previous year. The mindshare of Spring Cloud Data Flow is 4.9%, up from 4.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.
NitinGoyal - PeerSpot reviewer
Has a plug-and-play model and provides good robustness and scalability
The solution's community support could be improved. I don't know why the Spring Cloud Data Flow community is not very strong. Community support is very limited whenever you face any problem or are stuck somewhere. I'm not sure whether it has improved in the last six months because this pipeline was set up almost two years ago. I struggled with that a lot. For example, there was limited support whenever I got an exception and sought help from Stack Overflow or different forums. Interacting with Kubernetes needs a few certificates. You need to define all the certificates within your application. With the help of those certificates, your Java application or Spring Cloud Data Flow can interact with Kubernetes. I faced a lot of hurdles while placing those certificates. Despite following the official documentation to define all the replicas, readiness, and liveliness probes within the Spring Cloud Data Flow application, it was not working. So, I had to troubleshoot while digging in and debugging the internals of Spring Cloud Data Flow at that time. It was just a configuration mismatch, and I was doing nothing weird. There was a small spelling difference between how Spring Cloud Data Flow was expecting it and how I passed it. I was just following the official documentation.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"In the manufacturing industry, Databricks can be beneficial to use because of machine learning. It is useful for tasks, such as product analysis or predictive maintenance."
"There are good features for turning off clusters."
"The simplicity of development is the most valuable feature."
"It's great technology."
"I like cloud scalability and data access for any type of user."
"Easy to use and requires minimal coding and customizations."
"The technical support is good."
"The solution is easy to use and has a quick start-up time due to being on the cloud."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"The dashboards in Spring Cloud Dataflow are quite valuable."
"The most valuable feature is real-time streaming."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
"The product is very user-friendly."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
 

Cons

"As a data engineer, I see cluster failure in our Databricks user databases as a major issue."
"The API deployment and model deployment are not easy on the Databricks side."
"The solution could improve by providing better automation capabilities. For example, working together with more of a DevOps approach, such as continuous integration."
"Databricks has added some alerts and query functionality into their SQL persona, but the whole SQL persona, which is like a role, needs a lot of development. The alerts are not very flexible, and the query interface itself is not as polished as the notebook interface that is used through the data science and machine learning persona. It is clunky at present."
"There is room for improvement in visualization."
"Databricks' performance when serving the data to an analytics tool isn't as good as Snowflake's."
"There are no direct connectors — they are very limited."
"There has been a significant evolution in databases. One area of improvement is the Databricks File System (DBFS), where command-line challenges arise when accessing files."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"The solution's community support could be improved."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"I would improve the dashboard features as they are not very user-friendly."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
 

Pricing and Cost Advice

"The basic version of this solution is now open-source, so there are no license costs involved. However, there is a charge for any advanced functionality and this can be quite expensive."
"The solution uses a pay-per-use model with an annual subscription fee or package. Typically this solution is used on a cloud platform, such as Azure or AWS, but more people are choosing Azure because the price is more reasonable."
"The product pricing is moderate."
"I do not exactly know the costs, but one of our clients pays between $100 USD and $200 USD monthly."
"The cost for Databricks depends on the use case. I work on it as a consultant, so I'm using the client's Databricks, so it depends on how big the client is."
"The licensing costs of Databricks depend on how many licenses we need, depending on which Databricks provides a lot of discounts."
"Databricks uses a price-per-use model, where you can use as much compute as you need."
"I am based in South Africa, where it is expensive adapting to the cloud, and then there is the price for the tool itself."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
"The solution provides value for money, and we are currently using its community edition."
"This is an open-source product that can be used free of charge."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
838,713 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
17%
Computer Software Company
11%
Manufacturing Company
9%
Healthcare Company
6%
Financial Services Firm
26%
Computer Software Company
17%
Manufacturing Company
7%
Retailer
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
 

Also Known As

Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
No data available
 

Overview

 

Sample Customers

Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Information Not Available
Find out what your peers are saying about Databricks vs. Spring Cloud Data Flow and other solutions. Updated: January 2025.
838,713 professionals have used our research since 2012.