Try our new research platform with insights from 80,000+ expert users

Databricks vs Upsolver comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
88
Ranking in other categories
Cloud Data Warehouse (7th), Data Science Platforms (1st)
Upsolver
Ranking in Streaming Analytics
17th
Average Rating
8.6
Reviews Sentiment
7.6
Number of Reviews
2
Ranking in other categories
Data Integration (37th)
 

Mindshare comparison

As of April 2025, in the Streaming Analytics category, the mindshare of Databricks is 14.6%, up from 10.1% compared to the previous year. The mindshare of Upsolver is 0.2%, up from 0.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.
Snehasish Das - PeerSpot reviewer
Allows for data to be moved across platforms and different data technologies
The most prominent feature of Upsolver is its function as an ETL tool, allowing data to be moved across platforms and different data technologies. Upsolver does this in a quick time, unlike traditional processes which are time-consuming. Additionally, it offers scalability for large volumes of data, with performance and ease of cloud-native integration.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Databricks serves as a single platform for conducting the entire end-to-end lifecycle of machine learning models or AI ops."
"Databricks' capability to process data in parallel enhances data processing speed."
"It offers AI functionalities that assist with code management and machine learning processes."
"It is fast, it's scalable, and it does the job it needs to do."
"We like that this solution can handle a wide variety and velocity of data engineering, either in batch mode or real-time."
"The initial setup phase of Databricks was good."
"It helps integrate data science and machine learning capabilities."
"Databricks has improved my organization by allowing us to transform data from sources to a different format and feed that to the analytics, business intelligence, and reporting teams. This tool makes it easy to do those kinds of things."
"The most prominent feature of Upsolver is its function as an ETL tool, allowing data to be moved across platforms and different data technologies."
"It was easy to use and set up, with a nearly no-code interface that relied mostly on drag-and-drop functionality."
"Customer service is excellent, and I would rate it between eight point five to nine out of ten."
 

Cons

"Databricks would benefit from enhanced metrics and tighter integration with Azure's diagnostics."
"The connectivity with various BI tools could be improved, specifically the performance and real time integration."
"Overall it's a good product, however, it doesn't do well against any individual best-of-breed products."
"The integration features could be more interesting, more involved."
"I'm not the guy that I'm working with Databricks on a daily basis. I'm on the management team. However, my team tells me there are limitations with streaming events. The connectors work with a small set of platforms. For example, we can work with Kafka, but if we want to move to an event-driven solution from AWS, we cannot do it. We cannot connect to all the streaming analytics platforms, so we are limited in choosing the best one."
"I have seen better user interfaces, so that is something that can be improved."
"The tool should improve its integration with other products."
"They release patches that sometimes break our code. These patches are supposed to fix issues, but sometimes they cause disruptions."
"On the stability side, I would rate it seven out of ten. Using multiple cloud providers and data engineering technologies creates complexity, and managing different plugins is not always easy, but they are working on it."
"Upsolver excels in ETL and data aggregation, while ThoughtSpot is strong in natural language processing for querying datasets. Combining these tools can be very effective: Upsolver handles aggregation and ETL, and ThoughtSpot allows for natural language queries. There’s potential for highlighting these integrations in the future."
"There is room for improvement in query tuning."
 

Pricing and Cost Advice

"Databricks uses a price-per-use model, where you can use as much compute as you need."
"The licensing costs of Databricks is a tiered licensing regime, so it is flexible."
"The solution requires a subscription."
"The product pricing is moderate."
"We implement this solution on behalf of our customers who have their own Azure subscription and they pay for Databricks themselves. The pricing is more expensive if you have large volumes of data."
"I would rate the tool’s pricing an eight out of ten."
"I am based in South Africa, where it is expensive adapting to the cloud, and then there is the price for the tool itself."
"The solution is a good value for batch processing and huge workloads."
"Upsolver is affordable at approximately $225 per terabyte per year."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
848,716 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
17%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
6%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What is your experience regarding pricing and costs for Upsolver?
Upsolver is affordable at approximately $225 per terabyte per year. Compared to what I know from others, it's cheaper than many other products.
What needs improvement with Upsolver?
There is room for improvement in query tuning. Upsolver could do a more in-depth analysis in employing machine power, such as CPU and memory, to enhance query performance. Furthermore, allocating C...
What is your primary use case for Upsolver?
I am working as a consultant and currently have my own consultancy services. I provide services to companies that are data-heavy and looking for data engineering solutions for their business needs....
 

Comparisons

No data available
 

Also Known As

Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
No data available
 

Overview

 

Sample Customers

Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Information Not Available
Find out what your peers are saying about Databricks vs. Upsolver and other solutions. Updated: April 2025.
848,716 professionals have used our research since 2012.