Try our new research platform with insights from 80,000+ expert users

Databricks vs Upsolver comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
88
Ranking in other categories
Cloud Data Warehouse (7th), Data Science Platforms (1st)
Upsolver
Ranking in Streaming Analytics
17th
Average Rating
8.6
Reviews Sentiment
7.6
Number of Reviews
2
Ranking in other categories
Data Integration (37th)
 

Mindshare comparison

As of April 2025, in the Streaming Analytics category, the mindshare of Databricks is 14.6%, up from 10.1% compared to the previous year. The mindshare of Upsolver is 0.2%, up from 0.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.
Snehasish Das - PeerSpot reviewer
Allows for data to be moved across platforms and different data technologies
The most prominent feature of Upsolver is its function as an ETL tool, allowing data to be moved across platforms and different data technologies. Upsolver does this in a quick time, unlike traditional processes which are time-consuming. Additionally, it offers scalability for large volumes of data, with performance and ease of cloud-native integration.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable feature of Databricks is the integration of the data warehouse and data lake, and the development of the lake house. Additionally, it integrates well with Spark for processing data in production."
"What I like about Databricks is that it's one of the most popular platforms that give access to folks who are trying not just to do exploratory work on the data but also go ahead and build advanced modeling and machine learning on top of that."
"The built-in optimization recommendations halved the speed of queries and allowed us to reach decision points and deliver insights very quickly."
"The time travel feature is the solution's most valuable aspect."
"Databricks makes it really easy to use a number of technologies to do data analysis. In terms of languages, we can use Scala, Python, and SQL. Databricks enables you to run very large queries, at a massive scale, within really good timeframes."
"There are good features for turning off clusters."
"The solution is very easy to use."
"I work in the data science field and I found Databricks to be very useful."
"The most prominent feature of Upsolver is its function as an ETL tool, allowing data to be moved across platforms and different data technologies."
"Customer service is excellent, and I would rate it between eight point five to nine out of ten."
"It was easy to use and set up, with a nearly no-code interface that relied mostly on drag-and-drop functionality."
 

Cons

"Databricks can improve by making the documentation better."
"I would like to see more documentation in terms of how an end-user could use it, and users like me can easily try it and implement use cases."
"Overall it's a good product, however, it doesn't do well against any individual best-of-breed products."
"If I want to create a Databricks account, I need to have a prior cloud account such as an AWS account or an Azure account. Only then can I create a Databricks account on the cloud. However, if they can make it so that I can still try Databricks even if I don't have a cloud account on AWS and Azure, it would be great. That is, it would be nice if it were possible to create a pseudo account and be provided with a free trial. It is very essential to creating a workforce on Databricks. For example, students or corporate staff can then explore and learn Databricks."
"We'd like a more visual dashboard for analysis It needs better UI."
"The integration and query capabilities can be improved."
"The interface of Databricks could be easier to use when compared to other solutions. It is not easy for non-data scientists. The user interface is important before we had to write code manually and as solutions move to "No code AI" it is critical that the interface is very good."
"One area of improvement is the Databricks File System (DBFS), where command-line challenges arise when accessing files. Standardization of file paths on the system could help, as engineers sometimes struggle."
"There is room for improvement in query tuning."
"Upsolver excels in ETL and data aggregation, while ThoughtSpot is strong in natural language processing for querying datasets. Combining these tools can be very effective: Upsolver handles aggregation and ETL, and ThoughtSpot allows for natural language queries. There’s potential for highlighting these integrations in the future."
"On the stability side, I would rate it seven out of ten. Using multiple cloud providers and data engineering technologies creates complexity, and managing different plugins is not always easy, but they are working on it."
 

Pricing and Cost Advice

"The licensing costs of Databricks is a tiered licensing regime, so it is flexible."
"I am based in South Africa, where it is expensive adapting to the cloud, and then there is the price for the tool itself."
"I would rate Databricks' pricing seven out of ten."
"The price of Databricks is reasonable compared to other solutions."
"Price-wise, I would rate Databricks a three out of five."
"My smallest project is around a hundred euros, and my most expensive is just under a thousand euros a week. That is based on terabytes of data processed each month."
"The solution requires a subscription."
"Databricks are not costly when compared with other solutions' prices."
"Upsolver is affordable at approximately $225 per terabyte per year."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
842,767 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
17%
Computer Software Company
11%
Manufacturing Company
9%
Healthcare Company
6%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What is your experience regarding pricing and costs for Upsolver?
Upsolver is affordable at approximately $225 per terabyte per year. Compared to what I know from others, it's cheaper than many other products.
What needs improvement with Upsolver?
There is room for improvement in query tuning. Upsolver could do a more in-depth analysis in employing machine power, such as CPU and memory, to enhance query performance. Furthermore, allocating C...
What is your primary use case for Upsolver?
I am working as a consultant and currently have my own consultancy services. I provide services to companies that are data-heavy and looking for data engineering solutions for their business needs....
 

Comparisons

No data available
 

Also Known As

Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
No data available
 

Overview

 

Sample Customers

Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Information Not Available
Find out what your peers are saying about Databricks vs. Upsolver and other solutions. Updated: March 2025.
842,767 professionals have used our research since 2012.