Try our new research platform with insights from 80,000+ expert users

Altair RapidMiner vs Dremio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Mar 4, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Altair RapidMiner
Ranking in Data Science Platforms
7th
Average Rating
8.6
Reviews Sentiment
7.0
Number of Reviews
24
Ranking in other categories
Predictive Analytics (3rd)
Dremio
Ranking in Data Science Platforms
9th
Average Rating
8.6
Reviews Sentiment
7.1
Number of Reviews
8
Ranking in other categories
Cloud Data Warehouse (9th)
 

Mindshare comparison

As of April 2025, in the Data Science Platforms category, the mindshare of Altair RapidMiner is 7.7%, up from 6.5% compared to the previous year. The mindshare of Dremio is 4.3%, up from 2.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Laurence Moseley - PeerSpot reviewer
Offers good tutorials that make it easy to learn and use, with a powerful feature to compare machine learning algorithms
When I started using RapidMiner, I found it difficult to get it to read the metadata. I wanted to use, for example, a pivot table, and it did not have the variable or the attribute names in it. There were no values. It took a long while to figure out how to do that, although it tends to do it automatically nowadays. RapidMiner is not utterly intuitive for beginners. Sometimes people have trouble distinguishing between a file in their own file system and a repository entry, and they cannot find their data. This is an area where this solution could be improved. It would be helpful to have some tutorials on communicating with Python. I found it a bit difficult at times to figure out which particular variable, or attribute, is going where in Python. It is probably a simple thing to do but I haven't mastered it yet. I'd like them to do a video on that. There are a large number of videos that are usually well-produced, but I don't think that they have one on that. Essentially, I would like to see how to communicate from RapidMiner to Python and from Python to RapidMiner. One of the things I do a lot of is looking at questionnaires where people have used Likert-type scales. I don't recommend Likert-type scales, but if they're properly produced, which is a lot of hard work and it's not usually done, they're really powerful and you can do things like normalizing holes on the Likert scale. That's not the same as normalizing your data in RapidMiner. So, I would want to get results with these Likert scales, pass it through RapidMiner, do a normalization and pass back both the raw scores and the normalized scores and put in some rules, which will say if it's high on the raw score and on the normalized score and low on the standard deviation, then you can trust it.
KamleshPant - PeerSpot reviewer
Solution offers quick data connection with an edge in computation
It's almost similar, yet it's better than Starburst in spinning up or connecting to the new source since it's on SaaS. It is a similar experience between the based application and cloud-based application. You just get the source, connect the data, get visualization, get connected, and do whatever you want. They say data reflection is one way where they do the caching and all that. Starburst also does the caching. In Starburst, you have a data product. Here, the data product comes from a reflection perspective. The y are working on a columnar memory map, columnar computation. That will have some edge in computation.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable feature is what the product sets out to do, which is extracting information and data."
"I've been using a lot of components from the Strategic Extension and Python Extension."
"The most valuable feature of RapidMiner is that it is code free. It is similar to playing with Lego pieces and executing after you are finished to see the results. Additionally, it is easy to use and has interesting utilities when preparing the data. It has a utility to automatically launch a series of models and show the comparisons. When finished with the comparisons you can select the best one, and deploy it automatically."
"The documentation for this solution is very good, where each operator is explained with how to use it."
"RapidMiner is a no-code machine learning tool. I can install it on my local machine and work with smaller datasets. It can also connect to databases, allowing me to build models directly on the data stored there. RapidMiner offers a wider range of operators than other tools like Dataiku, making it a better option for my needs."
"Scalability is not really a concern with RapidMiner. It scales very well and can be used in global implementations."
"I like not having to write all solutions from code. Being able to drag and drop controls, enables me to focus on building the best model, without needing to search for syntax errors or extra libraries."
"The data science, collaboration, and IDN are very, very strong."
"Dremio gives you the ability to create services which do not require additional resources and sterilization."
"Dremio is very easy to use for building queries."
"Everyone uses Dremio in my company; some use it only for the analytics function."
"Dremio enables you to manage changes more effectively than any other data warehouse platform. There are two things that come into play. One is data lineage. If you are looking at data in Dremio, you may want to know the source and what happened to it along the way or how it may have been transformed in the data pipeline to get to the point where you're consuming it."
"Dremio allows querying the files I have on my block storage or object storage."
"Overall, you can rate it as eight out of ten."
"The most valuable feature of Dremio is it can sit on top of any other data storage, such as Amazon S3, Azure Data Factory, SGFS, or Hive. The memory competition is good. If you are running any kind of materialized view, you'd be running in memory."
"We primarily use Dremio to create a data framework and a data queue."
 

Cons

"In terms of the UI and SaaS, the user interface with KNIME is more appealing than RapidMiner."
"I would like to see all users have access to all of the deep learning models, and that they can be used easily."
"I would appreciate improvements in automation and customization options to further streamline processes."
"The biggest problem, not from a platform process, but from an avoidance process, is when you work in a heavily regulated environment, like banking and finance. Whenever you make a decision or there is an output, you need to bill it as an avoidance to the investigator or to the bank audit team. If you made decisions within this machine learning model, you need to explain why you did so. It would better if you could explain your decision in terms of delivery. However, this is an issue with all ML platforms. Many companies are working heavily in this area to help figure out how to make it more explainable to the business team or the regulator."
"The server product has been getting updated and continues to be better each release. When I started using RapidMiner, it was solid but not easy to set up and upgrade."
"The price of this solution should be improved."
"One challenge I encountered while implementing RapidMiner was the lack of documentation. Since there aren't as many users, finding resources to learn the tool was initially difficult. To overcome this hurdle, I believe RapidMiner could improve by providing more tutorials tailored for new users."
"In the Mexican or Latin American market, it's kind of pricey."
"We've faced a challenge with integrating Dremio and Databricks, specifically regarding authentication. It is not shaking hands very easily."
"They have an automated tool for building SQL queries, so you don't need to know SQL. That interface works, but it could be more efficient in terms of the SQL generated from those things. It's going through some growing pains. There is so much value in tools like these for people with no SQL experience. Over time, Dermio will make these capabilities more accessible to users who aren't database people."
"Dremio takes a long time to execute large queries or the executing of correlated queries or nested queries. Additionally, the solution could improve if we could read data from the streaming pipelines or if it allowed us to create the ETL pipeline directly on top of it, similar to Snowflake."
"I cannot use the recursive common table expression (CTE) in Dremio because the support page says it's currently unsupported."
"They need to have multiple connectors. Starburst is rich in connectors, however, they are lacking Salesforce connectivity as of today."
"They need to have multiple connectors."
"There are performance issues at times due to our limited experience with Dremio, and the fact that we are running it on single nodes using a community version."
"Dremio doesn't support the Delta connector. Dremio writes the IT support for Delta, but the support isn't great. There is definitely room for improvement."
 

Pricing and Cost Advice

"I used an educational license for this solution, which is available free of charge."
"I'm not fully aware of RapidMiner's price because we had licenses provided, but from my analysis, it's moderately priced, not too high or too low. It's worth the investment."
"The client only has to pay the licensing costs. There are not any maintenance or hidden costs in addition to the license."
"For the university, the cost of the solution is free for the students and teachers."
"Although we don't pay licensing fees because it is being used within the university, my understanding is that the cost is between $5,000 and $10,000 USD per year."
"Right now the cluster costs approximately $200,000 per month and is based on the volume of data we have."
"Dremio is less costly competitively to Snowflake or any other tool."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
846,617 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
University
11%
Computer Software Company
11%
Educational Organization
10%
Financial Services Firm
9%
Financial Services Firm
32%
Computer Software Company
10%
Manufacturing Company
7%
Healthcare Company
4%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about RapidMiner?
RapidMiner is a no-code machine learning tool. I can install it on my local machine and work with smaller datasets. It can also connect to databases, allowing me to build models directly on the dat...
What is your experience regarding pricing and costs for RapidMiner?
I'm not fully aware of RapidMiner's price because we had licenses provided, but from my analysis, it's moderately priced, not too high or too low. It's worth the investment.
What needs improvement with RapidMiner?
Altair RapidMiner needs updates to its examples, particularly in business and marketing areas, and to the tool itself. The user interface should be improved. Incorporating generative AI as an AI as...
What do you like most about Dremio?
Dremio allows querying the files I have on my block storage or object storage.
What is your experience regarding pricing and costs for Dremio?
The licensing is very expensive. We need a license to scale as we are currently using the community version.
What needs improvement with Dremio?
They need to have multiple connectors. Starburst is rich in connectors, however, they are lacking Salesforce connectivity as of today. They don't have Salesforce connectivity. However, Starburst do...
 

Comparisons

 

Overview

 

Sample Customers

PayPal, Deloitte, eBay, Cisco, Miele, Volkswagen
UBS, TransUnion, Quantium, Daimler, OVH
Find out what your peers are saying about Altair RapidMiner vs. Dremio and other solutions. Updated: March 2025.
846,617 professionals have used our research since 2012.