Try our new research platform with insights from 80,000+ expert users

Amazon Kinesis vs Apache Flink comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Oct 8, 2024
 

Categories and Ranking

Amazon Kinesis
Ranking in Streaming Analytics
2nd
Average Rating
8.0
Reviews Sentiment
7.0
Number of Reviews
27
Ranking in other categories
No ranking in other categories
Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.6
Reviews Sentiment
7.1
Number of Reviews
16
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of November 2024, in the Streaming Analytics category, the mindshare of Amazon Kinesis is 10.6%, down from 15.4% compared to the previous year. The mindshare of Apache Flink is 11.7%, up from 11.0% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Rajni Kumar Jha - PeerSpot reviewer
Used for media streaming and live-streaming data
It is not compulsory to use Amazon Kinesis. If you don't want to use the data streaming, you can use just the Kinesis data firehose. Using the Kinesis data firehose is compulsory because we can't store all chats and recordings in Amazon S3 without it. When a call comes in the Amazon Kinesis instance, it will go to Data Streams if we use it. Otherwise, it will go to the Kinesis data firehose, where we need to define the S3 bucket path, and it will go to Amazon S3. So, without the Kinesis data firehose, we can't store all the chats and recordings in Amazon S3. Using Amazon Kinesis totally depends upon the user's requirements. If you want to use live streaming for the data lake or data analyst team, you need to use Amazon Kinesis. If you don't want to use it, you can directly use the Kinesis data firehose, which will be stored in Amazon S3. Overall, I rate the solution an eight out of ten.
Sunil  Morya - PeerSpot reviewer
Easy to deploy and manage; lacking simple integration with Amazon products
The issue we had with Flink was that when you had to refer the schema into the input data stream, it had to be done directly into code. The XLS format where the schema is stored, had to be stored in Python. If the schema changes, you have to redeploy Flink because the basic tasks and jobs are already running. That's one disadvantage. Another was a restriction with Amazon's CloudFormation templates which don't allow for direct deployment in the private subnet. You have to deploy into the public subnet and then from the Amazon console, specify a different private subnet that requires a lot of settings. In general, the integration with Amazon products was not good and was very time-consuming. I'd like to think that has changed.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The product's initial setup phase is not difficult because we are using the tool on the cloud."
"I like the ease of use and how we can quickly get the configurations done, making it pretty straightforward and stable."
"I find almost all features valuable, especially the timing and fast pace movement."
"The integration capabilities of the product are good."
"From my experience, one of the most valuable features is the ability to track silent events on endpoints. Previously, these events might have gone unnoticed, but now we can access them within the product range. For example, if a customer reports that their calls are not reaching the portal files, we can use this feature to troubleshoot and optimize the system."
"Amazon Kinesis also provides us with plenty of flexibility."
"The Kinesis VideoStream and DataStream are the most important features."
"Amazon Kinesis has improved our ROI."
"This is truly a real-time solution."
"It is user-friendly and the reporting is good."
"The setup was not too difficult."
"The documentation is very good."
"The top feature of Apache Flink is its low latency for fast, real-time data. Another great feature is the real-time indicators and alerts which make a big difference when it comes to data processing and analysis."
"The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. We use Apache Flink to control our clients' installations."
"It provides us the flexibility to deploy it on any cluster without being constrained by cloud-based limitations."
"With Flink, it provides out-of-the-box checkpointing and state management. It helps us in that way. When Storm used to restart, sometimes we would lose messages. With Flink, it provides guaranteed message processing, which helped us. It also helped us with maintenance or restarts."
 

Cons

"I suggest integrating additional features, such as incorporating Amazon Pinpoint or Amazon Connect as bundled offerings, rather than deploying them as separate services."
"For me, especially with video streams, there's sometimes a kind of delay when the data has to be pumped to other services. This delay could be improved in Kinesis, or especially the Kinesis Video Streams, which is being used for different use cases for Amazon Connect. With that improvement, a lot of other use cases of Amazon Connect integrating with third-party analytic tools would be easier."
"The solution has a two-minute maximum time delay for live streaming, which could be reduced."
"The price is not much cheaper. So, there is room for improvement in the pricing."
"AI processing or cleaning up data would be nice since I don't think it is a feature in Amazon Kinesis right now."
"Lacks first in, first out queuing."
"Amazon Kinesis should improve its limits."
"Kinesis is good for Amazon Cloud but not as suitable for other cloud vendors."
"The TimeWindow feature is a bit tricky. The timing of the content and the windowing is a bit changed in 1.11. They have introduced watermarks. A watermark is basically associating every data with a timestamp. The timestamp could be anything, and we can provide the timestamp. So, whenever I receive a tweet, I can actually assign a timestamp, like what time did I get that tweet. The watermark helps us to uniquely identify the data. Watermarks are tricky if you use multiple events in the pipeline. For example, you have three resources from different locations, and you want to combine all those inputs and also perform some kind of logic. When you have more than one input screen and you want to collect all the information together, you have to apply TimeWindow all. That means that all the events from the upstream or from the up sources should be in that TimeWindow, and they were coming back. Internally, it is a batch of events that may be getting collected every five minutes or whatever timing is given. Sometimes, the use case for TimeWindow is a bit tricky. It depends on the application as well as on how people have given this TimeWindow. This kind of documentation is not updated. Even the test case documentation is a bit wrong. It doesn't work. Flink has updated the version of Apache Flink, but they have not updated the testing documentation. Therefore, I have to manually understand it. We have also been exploring failure handling. I was looking into changelogs for which they have posted the future plans and what are they going to deliver. We have two concerns regarding this, which have been noted down. I hope in the future that they will provide this functionality. Integration of Apache Flink with other metric services or failure handling data tools needs some kind of update or its in-depth knowledge is required in the documentation. We have a use case where we want to actually analyze or get analytics about how much data we process and how many failures we have. For that, we need to use Tomcat, which is an analytics tool for implementing counters. We can manage reports in the analyzer. This kind of integration is pretty much straightforward. They say that people must be well familiar with all the things before using this type of integration. They have given this complete file, which you can update, but it took some time. There is a learning curve with it, which consumed a lot of time. It is evolving to a newer version, but the documentation is not demonstrating that update. The documentation is not well incorporated. Hopefully, these things will get resolved now that they are implementing it. Failure is another area where it is a bit rigid or not that flexible. We never use this for scaling because complexity is very high in case of a failure. Processing and providing the scaled data back to Apache Flink is a bit challenging. They have this concept of offsetting, which could be simplified."
"The machine learning library is not very flexible."
"In terms of improvement, there should be better reporting. You can integrate with reporting solutions but Flink doesn't offer it themselves."
"PyFlink is not as fully featured as Python itself, so there are some limitations to what you can do with it."
"There is room for improvement in the initial setup process."
"One way to improve Flink would be to enhance integration between different ecosystems. For example, there could be more integration with other big data vendors and platforms similar in scope to how Apache Flink works with Cloudera. Apache Flink is a part of the same ecosystem as Cloudera, and for batch processing it's actually very useful but for real-time processing there could be more development with regards to the big data capabilities amongst the various ecosystems out there."
"In a future release, they could improve on making the error descriptions more clear."
"There are more libraries that are missing and also maybe more capabilities for machine learning."
 

Pricing and Cost Advice

"I rate the product price a five on a scale of one to ten, where one is cheap, and ten is expensive."
"Amazon Kinesis pricing is sometimes reasonable and sometimes could be better, depending on the planning, so it's a five out of ten for me."
"The tool's entry price is cheap. However, pricing increases with data volume."
"The fee is based on the number of hours the service is running."
"In general, cloud services are very convenient to use, even if we have to pay a bit more, as we know what we are paying for and can focus on other tasks."
"The solution's pricing is fair."
"Amazon Kinesis is an expensive solution."
"The pricing depends on the use cases and the level of usage. If you wanted to use Kinesis for different use cases, there's definitely a cheaper base cost involved. However, it's not entirely cheap, as different use cases might require different levels of Kinesis usage."
"The solution is open-source, which is free."
"It's an open source."
"Apache Flink is open source so we pay no licensing for the use of the software."
"This is an open-source platform that can be used free of charge."
"It's an open-source solution."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
816,406 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
18%
Financial Services Firm
18%
Manufacturing Company
10%
Retailer
4%
Financial Services Firm
23%
Computer Software Company
17%
Manufacturing Company
6%
Educational Organization
4%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Amazon Kinesis?
Amazon Kinesis's main purpose is to provide near real-time data streaming at a consistent 2Mbps rate, which is really impressive.
What is your experience regarding pricing and costs for Amazon Kinesis?
I think for us, with Amazon Kinesis, if we have to set up our own Kafka or cluster, it will be very time-consuming. If one considers the aforementioned aspect, Amazon Kinesis is a cheap tool.
What needs improvement with Amazon Kinesis?
There are some kind of hard limits on Amazon Kinesis, and if you hit that, then you will get the throughput exceed error. We have to deal with and reduce how many consumers are hitting Amazon Kines...
What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
There are more libraries that are missing and also maybe more capabilities for machine learning. It could have a friendly user interface for pipeline configuration, deployment, and monitoring.
 

Also Known As

Amazon AWS Kinesis, AWS Kinesis, Kinesis
Flink
 

Overview

 

Sample Customers

Zillow, Netflix, Sonos
LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Find out what your peers are saying about Amazon Kinesis vs. Apache Flink and other solutions. Updated: October 2024.
816,406 professionals have used our research since 2012.