Try our new research platform with insights from 80,000+ expert users

Amazon Kinesis vs Apache Flink comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Jan 12, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon Kinesis
Ranking in Streaming Analytics
2nd
Average Rating
8.0
Reviews Sentiment
7.1
Number of Reviews
27
Ranking in other categories
No ranking in other categories
Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.6
Reviews Sentiment
6.9
Number of Reviews
16
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of March 2025, in the Streaming Analytics category, the mindshare of Amazon Kinesis is 9.1%, down from 14.2% compared to the previous year. The mindshare of Apache Flink is 12.6%, up from 9.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Rajni Kumar Jha - PeerSpot reviewer
Used for media streaming and live-streaming data
It is not compulsory to use Amazon Kinesis. If you don't want to use the data streaming, you can use just the Kinesis data firehose. Using the Kinesis data firehose is compulsory because we can't store all chats and recordings in Amazon S3 without it. When a call comes in the Amazon Kinesis instance, it will go to Data Streams if we use it. Otherwise, it will go to the Kinesis data firehose, where we need to define the S3 bucket path, and it will go to Amazon S3. So, without the Kinesis data firehose, we can't store all the chats and recordings in Amazon S3. Using Amazon Kinesis totally depends upon the user's requirements. If you want to use live streaming for the data lake or data analyst team, you need to use Amazon Kinesis. If you don't want to use it, you can directly use the Kinesis data firehose, which will be stored in Amazon S3. Overall, I rate the solution an eight out of ten.
Ilya Afanasyev - PeerSpot reviewer
A great solution with an intricate system and allows for batch data processing
We value this solution's intricate system because it comes with a state inside the mechanism and product. The system allows us to process batch data, stream to real-time and build pipelines. Additionally, we do not need to process data from the beginning when we pause, and we can continue from the same point where we stopped. It helps us save time as 95% of our pipelines will now be on Amazon, and we'll save money by saving time.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Amazon Kinesis also provides us with plenty of flexibility."
"I find almost all features valuable, especially the timing and fast pace movement."
"The scalability is pretty good."
"The Kinesis VideoStream and DataStream are the most important features."
"From my experience, one of the most valuable features is the ability to track silent events on endpoints. Previously, these events might have gone unnoticed, but now we can access them within the product range. For example, if a customer reports that their calls are not reaching the portal files, we can use this feature to troubleshoot and optimize the system."
"What I like about Amazon Kinesis is that it's very effective for small businesses. It's a well-managed solution with excellent reporting. Amazon Kinesis is also easy to use, and even a novice developer can work with it, versus Apache Kafka, which requires expertise."
"The product's initial setup phase is not difficult because we are using the tool on the cloud."
"Everything is hosted and simple."
"The setup was not too difficult."
"Apache Flink offers a range of powerful configurations and experiences for development teams. Its strength lies in its development experience and capabilities."
"It provides us the flexibility to deploy it on any cluster without being constrained by cloud-based limitations."
"With Flink, it provides out-of-the-box checkpointing and state management. It helps us in that way. When Storm used to restart, sometimes we would lose messages. With Flink, it provides guaranteed message processing, which helped us. It also helped us with maintenance or restarts."
"It is user-friendly and the reporting is good."
"Allows us to process batch data, stream to real-time and build pipelines."
"The documentation is very good."
"The event processing function is the most useful or the most used function. The filter function and the mapping function are also very useful because we have a lot of data to transform. For example, we store a lot of information about a person, and when we want to retrieve this person's details, we need all the details. In the map function, we can actually map all persons based on their age group. That's why the mapping function is very useful. We can really get a lot of events, and then we keep on doing what we need to do."
 

Cons

"Snapshot from the the from the the stream of the data analytic I have already on the cloud, do a snapshot to not to make great or to get the data out size of the web service. But to stop the process and restart a few weeks later when I have more data or more available of the client teams."
"The price is not much cheaper. So, there is room for improvement in the pricing."
"In general, the pain point for us was that once the data gets into Kinesis there is no way for us to understand what's happening because Kinesis divides everything into shards. So if we wanted to understand what's happening with a particular shard, whether it is published or not, we could not. Even with the logs, if we want to have some kind of logging it is in the shard."
"AI processing or cleaning up data would be nice since I don't think it is a feature in Amazon Kinesis right now."
"We were charged high costs for the solution’s enhanced fan-out feature."
"Something else to mention is that we use Kinesis with Lambda a lot and the fact that you can only connect one Stream to one Lambda, I find is a limiting factor. I would definitely recommend to remove that constraint."
"The solution has a two-minute maximum time delay for live streaming, which could be reduced."
"One area for improvement in the solution is the file size limitation of 10 Mb. My company works with files with a larger file size. The batch size and throughput also need improvement in Amazon Kinesis."
"Apache Flink's documentation should be available in more languages."
"We have a machine learning team that works with Python, but Apache Flink does not have full support for the language."
"Amazon's CloudFormation templates don't allow for direct deployment in the private subnet."
"The state maintains checkpoints and they use RocksDB or S3. They are good but sometimes the performance is affected when you use RocksDB for checkpointing."
"In terms of stability with Flink, it is something that you have to deal with every time. Stability is the number one problem that we have seen with Flink, and it really depends on the kind of problem that you're trying to solve."
"The TimeWindow feature is a bit tricky. The timing of the content and the windowing is a bit changed in 1.11. They have introduced watermarks. A watermark is basically associating every data with a timestamp. The timestamp could be anything, and we can provide the timestamp. So, whenever I receive a tweet, I can actually assign a timestamp, like what time did I get that tweet. The watermark helps us to uniquely identify the data. Watermarks are tricky if you use multiple events in the pipeline. For example, you have three resources from different locations, and you want to combine all those inputs and also perform some kind of logic. When you have more than one input screen and you want to collect all the information together, you have to apply TimeWindow all. That means that all the events from the upstream or from the up sources should be in that TimeWindow, and they were coming back. Internally, it is a batch of events that may be getting collected every five minutes or whatever timing is given. Sometimes, the use case for TimeWindow is a bit tricky. It depends on the application as well as on how people have given this TimeWindow. This kind of documentation is not updated. Even the test case documentation is a bit wrong. It doesn't work. Flink has updated the version of Apache Flink, but they have not updated the testing documentation. Therefore, I have to manually understand it. We have also been exploring failure handling. I was looking into changelogs for which they have posted the future plans and what are they going to deliver. We have two concerns regarding this, which have been noted down. I hope in the future that they will provide this functionality. Integration of Apache Flink with other metric services or failure handling data tools needs some kind of update or its in-depth knowledge is required in the documentation. We have a use case where we want to actually analyze or get analytics about how much data we process and how many failures we have. For that, we need to use Tomcat, which is an analytics tool for implementing counters. We can manage reports in the analyzer. This kind of integration is pretty much straightforward. They say that people must be well familiar with all the things before using this type of integration. They have given this complete file, which you can update, but it took some time. There is a learning curve with it, which consumed a lot of time. It is evolving to a newer version, but the documentation is not demonstrating that update. The documentation is not well incorporated. Hopefully, these things will get resolved now that they are implementing it. Failure is another area where it is a bit rigid or not that flexible. We never use this for scaling because complexity is very high in case of a failure. Processing and providing the scaled data back to Apache Flink is a bit challenging. They have this concept of offsetting, which could be simplified."
"PyFlink is not as fully featured as Python itself, so there are some limitations to what you can do with it."
"There is room for improvement in the initial setup process."
 

Pricing and Cost Advice

"I think for us, with Amazon Kinesis, if we have to set up our own Kafka or cluster, it will be very time-consuming. If one considers the aforementioned aspect, Amazon Kinesis is a cheap tool."
"Amazon Kinesis is an expensive solution."
"The tool's pricing is cheap."
"It was actually a fairly high volume we were spending. We were spending about 150 a month."
"The tool's entry price is cheap. However, pricing increases with data volume."
"The product falls on a bit of an expensive side."
"I rate the product price a five on a scale of one to ten, where one is cheap, and ten is expensive."
"The solution's pricing is fair."
"This is an open-source platform that can be used free of charge."
"Apache Flink is open source so we pay no licensing for the use of the software."
"The solution is open-source, which is free."
"It's an open-source solution."
"It's an open source."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
842,388 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
19%
Financial Services Firm
17%
Manufacturing Company
9%
Retailer
5%
Financial Services Firm
23%
Computer Software Company
16%
Manufacturing Company
6%
Retailer
4%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Amazon Kinesis?
Amazon Kinesis's main purpose is to provide near real-time data streaming at a consistent 2Mbps rate, which is really impressive.
What is your experience regarding pricing and costs for Amazon Kinesis?
Amazon Kinesis is moderately priced. In comparison with other competitors, it is fairly priced, however, if they reduced the price a little, it could add more value to customers.
What needs improvement with Amazon Kinesis?
I do not see any scope for improvement as it does what it is supposed to do. No changes are required. Since it's predominantly a back-end service, any end-user isn't going to interact with it direc...
What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
There are more libraries that are missing and also maybe more capabilities for machine learning. It could have a friendly user interface for pipeline configuration, deployment, and monitoring.
 

Also Known As

Amazon AWS Kinesis, AWS Kinesis, Kinesis
Flink
 

Overview

 

Sample Customers

Zillow, Netflix, Sonos
LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Find out what your peers are saying about Amazon Kinesis vs. Apache Flink and other solutions. Updated: March 2025.
842,388 professionals have used our research since 2012.