Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.6
Reviews Sentiment
6.9
Number of Reviews
16
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
85
Ranking in other categories
Data Science Platforms (1st)
 

Mindshare comparison

As of January 2025, in the Streaming Analytics category, the mindshare of Apache Flink is 12.4%, up from 10.5% compared to the previous year. The mindshare of Databricks is 14.6%, up from 10.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Ilya Afanasyev - PeerSpot reviewer
A great solution with an intricate system and allows for batch data processing
We value this solution's intricate system because it comes with a state inside the mechanism and product. The system allows us to process batch data, stream to real-time and build pipelines. Additionally, we do not need to process data from the beginning when we pause, and we can continue from the same point where we stopped. It helps us save time as 95% of our pipelines will now be on Amazon, and we'll save money by saving time.
Parag Bhosale - PeerSpot reviewer
Integrating engineering and learning, but cost challenges arise with cluster management
We often use a single cluster to ingest Databricks, which Databricks doesn't recommend. They suggest using a no-cluster solution like job clusters. This can be overwhelming for us because we started smaller. We prefer using a small to mid-sized cluster for many jobs to keep costs low, but this sometimes doesn't support our operations properly. We need to stay in sync with the DVR versions, and migrations can pose challenges. For example, issues arose when we moved a cluster from a previous version to the latest one. We could use their job clusters, however, that increases costs, which is challenging for us as a startup. Maintaining this infrastructure can be a headache.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It is user-friendly and the reporting is good."
"Apache Flink allows you to reduce latency and process data in real-time, making it ideal for such scenarios."
"Apache Flink offers a range of powerful configurations and experiences for development teams. Its strength lies in its development experience and capabilities."
"Another feature is how Flink handles its radiuses. It has something called the checkpointing concept. You're dealing with billions and billions of requests, so your system is going to fail in large storage systems. Flink handles this by using the concept of checkpointing and savepointing, where they write the aggregated state into some separate storage. So in case of failure, you can basically recall from that state and come back."
"With Flink, it provides out-of-the-box checkpointing and state management. It helps us in that way. When Storm used to restart, sometimes we would lose messages. With Flink, it provides guaranteed message processing, which helped us. It also helped us with maintenance or restarts."
"The documentation is very good."
"The event processing function is the most useful or the most used function. The filter function and the mapping function are also very useful because we have a lot of data to transform. For example, we store a lot of information about a person, and when we want to retrieve this person's details, we need all the details. In the map function, we can actually map all persons based on their age group. That's why the mapping function is very useful. We can really get a lot of events, and then we keep on doing what we need to do."
"This is truly a real-time solution."
"I like cloud scalability and data access for any type of user."
"It is fast, it's scalable, and it does the job it needs to do."
"I like that Databricks is a unified platform that lets you do streaming and batch processing in the same place. You can do analytics, too. They have added something called Databricks SQL Analytics, allowing users to connect to the data lake to perform analytics. Databricks also will enable you to share your data securely. It integrates with your reporting system as well."
"This solution offers a lake house data concept that we have found exciting. We are able to have a large amount of data in a data lake and can manage all relational activities."
"The most valuable feature is the ability to use SQL directly with Databricks."
"When we have a huge volume of data that we want to process with speed, velocity, and volume, we go through Databricks."
"I like the ability to use workspaces with other colleagues because you can work together even without seeing the other team's job."
"The setup was straightforward."
 

Cons

"In terms of stability with Flink, it is something that you have to deal with every time. Stability is the number one problem that we have seen with Flink, and it really depends on the kind of problem that you're trying to solve."
"We have a machine learning team that works with Python, but Apache Flink does not have full support for the language."
"The solution could be more user-friendly."
"The TimeWindow feature is a bit tricky. The timing of the content and the windowing is a bit changed in 1.11. They have introduced watermarks. A watermark is basically associating every data with a timestamp. The timestamp could be anything, and we can provide the timestamp. So, whenever I receive a tweet, I can actually assign a timestamp, like what time did I get that tweet. The watermark helps us to uniquely identify the data. Watermarks are tricky if you use multiple events in the pipeline. For example, you have three resources from different locations, and you want to combine all those inputs and also perform some kind of logic. When you have more than one input screen and you want to collect all the information together, you have to apply TimeWindow all. That means that all the events from the upstream or from the up sources should be in that TimeWindow, and they were coming back. Internally, it is a batch of events that may be getting collected every five minutes or whatever timing is given. Sometimes, the use case for TimeWindow is a bit tricky. It depends on the application as well as on how people have given this TimeWindow. This kind of documentation is not updated. Even the test case documentation is a bit wrong. It doesn't work. Flink has updated the version of Apache Flink, but they have not updated the testing documentation. Therefore, I have to manually understand it. We have also been exploring failure handling. I was looking into changelogs for which they have posted the future plans and what are they going to deliver. We have two concerns regarding this, which have been noted down. I hope in the future that they will provide this functionality. Integration of Apache Flink with other metric services or failure handling data tools needs some kind of update or its in-depth knowledge is required in the documentation. We have a use case where we want to actually analyze or get analytics about how much data we process and how many failures we have. For that, we need to use Tomcat, which is an analytics tool for implementing counters. We can manage reports in the analyzer. This kind of integration is pretty much straightforward. They say that people must be well familiar with all the things before using this type of integration. They have given this complete file, which you can update, but it took some time. There is a learning curve with it, which consumed a lot of time. It is evolving to a newer version, but the documentation is not demonstrating that update. The documentation is not well incorporated. Hopefully, these things will get resolved now that they are implementing it. Failure is another area where it is a bit rigid or not that flexible. We never use this for scaling because complexity is very high in case of a failure. Processing and providing the scaled data back to Apache Flink is a bit challenging. They have this concept of offsetting, which could be simplified."
"Apache Flink should improve its data capability and data migration."
"The state maintains checkpoints and they use RocksDB or S3. They are good but sometimes the performance is affected when you use RocksDB for checkpointing."
"One way to improve Flink would be to enhance integration between different ecosystems. For example, there could be more integration with other big data vendors and platforms similar in scope to how Apache Flink works with Cloudera. Apache Flink is a part of the same ecosystem as Cloudera, and for batch processing it's actually very useful but for real-time processing there could be more development with regards to the big data capabilities amongst the various ecosystems out there."
"There is room for improvement in the initial setup process."
"Databricks' performance when serving the data to an analytics tool isn't as good as Snowflake's."
"Some of the error messages that we receive are too vague, saying things like "unknown exception", and these should be improved to make it easier for developers to debug problems."
"It would be great if Databricks could integrate all the cloud platforms."
"They release patches that sometimes break our code. These patches are supposed to fix issues, but sometimes they cause disruptions."
"In the next release, I would like to see more optimization features."
"There is room for improvement in visualization."
"There should be better integration with other platforms."
"The data visualization for this solution could be improved. They have started to roll out a data visualization tool inside Databricks but it is in the early stages. It's not comparable to a solution like Power BI, Luca, or Tableau."
 

Pricing and Cost Advice

"This is an open-source platform that can be used free of charge."
"Apache Flink is open source so we pay no licensing for the use of the software."
"It's an open source."
"It's an open-source solution."
"The solution is open-source, which is free."
"Databricks uses a price-per-use model, where you can use as much compute as you need."
"I would rate Databricks' pricing seven out of ten."
"The price of Databricks is reasonable compared to other solutions."
"There are different versions."
"Price-wise, I would rate Databricks a three out of five."
"Databricks are not costly when compared with other solutions' prices."
"I'm not involved in the financing, but I can say that the solution seemed reasonably priced compared to the competitors. Similar products are usually in the same price range. With five being affordable and one being expensive, I would rate Databricks a four out of five."
"The billing of Databricks can be difficult and should improve."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
831,265 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
23%
Computer Software Company
17%
Manufacturing Company
6%
Healthcare Company
5%
Financial Services Firm
17%
Computer Software Company
11%
Manufacturing Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
There are more libraries that are missing and also maybe more capabilities for machine learning. It could have a friendly user interface for pipeline configuration, deployment, and monitoring.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Comparisons

 

Also Known As

Flink
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Learn More

 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Apache Flink vs. Databricks and other solutions. Updated: January 2025.
831,265 professionals have used our research since 2012.