Snowflake and Amazon Redshift compete in the data warehousing category. Snowflake seems to have an upper hand in scalability and ease of use, while Amazon Redshift is favored for its robust AWS integration and comprehensive feature set.
Features: Snowflake is known for its automatic scaling, clean architecture, and ease of data sharing. Amazon Redshift is praised for its strong performance, robust querying capabilities, and deep integration with AWS.
Room for Improvement: Snowflake users mention the need for better cost management tools, more detailed documentation, and cost transparency. Amazon Redshift users express a desire for easier management of large clusters, faster support response times, and improvements in cluster management.
Ease of Deployment and Customer Service: Snowflake users find deployment simple and customer service responsive. Amazon Redshift is viewed as intricate to deploy but benefits from comprehensive AWS customer support.
Pricing and ROI: Snowflake users feel initial setup costs are justified by performance efficiency and scalability ROI. Amazon Redshift users acknowledge higher up-front costs but appreciate long-term ROI from its extensive features.
What is Amazon Redshift?
Amazon Redshift is a fully administered, petabyte-scale cloud-based data warehouse service. Users are able to begin with a minimal amount of gigabytes of data and can easily scale up to a petabyte or more as needed. This will enable them to utilize their own data to develop new intuitions on how to improve business processes and client relations.
Initially, users start to develop a data warehouse by initiating what is called an Amazon Redshift cluster or a set of nodes. Once the cluster has been provisioned, users can seamlessly upload data sets, and then begin to perform data analysis queries. Amazon Redshift delivers super-fast query performance, regardless of size, utilizing the exact SQL-based tools and BI applications that most users are already working with today.
The Amazon Redshift service performs all of the work of setting up, operating, and scaling a data warehouse. These tasks include provisioning capacity, monitoring and backing up the cluster, and applying patches and upgrades to the Amazon Redshift engine.
Amazon Redshift Functionalities
Amazon Redshift has many valuable key functionalities. Some of its most useful functionalities include:
Reviews from Real Users
“Redshift's versioning and data security are the two most critical features. When migrating into the cloud, it's vital to secure the data. The encryption and security are there.” - Kundan A., Senior Consultant at Dynamic Elements AS
“With the cloud version whenever you want to deploy, you can scale up, and down, and it has a data warehousing capability. Redshift has many features. They have enriched and elaborate documentation that is helpful.”- Aishwarya K., Solution Architect at Capgemini
Snowflake is a cloud-based data warehousing solution for storing and processing data, generating reports and dashboards, and as a BI reporting source. It is used for optimizing costs and using financial data, as well as for migrating data from on-premises to the cloud. The solution is often used as a centralized data warehouse, combining data from multiple sources.
Snowflake has helped organizations improve query performance, store and process JSON and XML, consolidate multiple databases into one unified table, power company-wide dashboards, increase productivity, reduce processing time, and have easy maintenance with good technical support.
Its platform is made up of three components:
Snowflake has many valuable vital features. Some of the most useful ones include:
There are many benefits to implementing Snowflake. It helps optimize costs, reduce downtime, improve operational efficiency, and automate data replication for fast recovery, and it is built for high reliability and availability.
Below are quotes from interviews we conducted with users currently using the Snowflake solution:
Sreenivasan R., Director of Data Architecture and Engineering at Decision Minds, says, "Data sharing is a good feature. It is a majorly used feature. The elastic computing is another big feature. Separating computing and storage gives you flexibility. It doesn't require much DBA involvement because it doesn't need any performance tuning. We are not doing any performance tuning, and the entire burden of performance and SQL tuning is on Snowflake. Its usability is very good. I don't need to ramp up any user, and its onboarding is easier. You just onboard the user, and you are done with it. There are simple SQL and UI, and people are able to use this solution easily. Ease of use is a big thing in Snowflake."
A director of business operations at a logistics company mentions, "It requires no maintenance on our part. They handle all that. The speed is phenomenal. The pricing isn't really anything more than what you would be paying for a SQL server license or another tool to execute the same thing. We have zero maintenance on our side to do anything and the speed at which it performs queries and loads the data is amazing. It handles unstructured data extremely well, too. So, if the data is in a JSON array or an XML, it handles that super well."
A Solution Architect at a wholesaler/distributor comments, "The ability to share the data and the ability to scale up and down easily are the most valuable features. The concept of data sharing and data plumbing made it very easy to provide and share data. The ability to refresh your Dev or QA just by doing a clone is also valuable. It has the dynamic scale up and scale down feature. Development and deployment are much easier as compared to other platforms where you have to go through a lot of stuff. With a tool like DBT, you can do modeling and transformation within a single tool and deploy to Snowflake. It provides continuous deployment and continuous integration abilities. There is a separation of storage and compute, so you only get charged for your usage. You only pay for what you use. When we share the data downstream with business partners, we can specifically create compute for them, and we can charge back the business."
We monitor all Cloud Data Warehouse reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.