Snowflake and Oracle Autonomous Data Warehouse both compete in the data management category. Snowflake seems to have the upper hand due to its scalability and flexibility, enhancing user experience and cost management.
Features: Snowflake offers scalability to adjust node sizes based on user requirements, swift processing of large datasets, and support for multiple data formats. Its architecture enables separate scaling for storage and computing. Oracle provides robust automation and self-managing capabilities, leveraging integrated queries for performance benefits.
Room for Improvement: Snowflake could improve its spatial components, client interface, pricing clarity, and integration capabilities. Oracle could enhance support for data migration, storage flexibility, and integration with on-premise solutions.
Ease of Deployment and Customer Service: Snowflake is flexible across cloud environments with user-friendly setup and community support, though its technical support lacks SLAs and can be slow. Oracle offers a stable support experience with quick responses but has a more complex deployment process, especially with system integration.
Pricing and ROI: Snowflake's credit model offers pricing flexibility and good value, though users find it complex. It delivers strong ROI due to efficient dataset handling. Oracle's usage-based pricing allows CPU resource scaling, yet it is seen as more expensive, justified by performance capabilities.
Oracle Autonomous Data Warehouse is the world’s first and only autonomous database optimized for analytic workloads, including data marts, data warehouses, data lakes, and data lakehouses. With Autonomous Data Warehouse, data scientists, business analysts, and nonexperts can rapidly, easily, and cost-effectively discover business insights using data of any size and type. Built for the cloud and optimized using Oracle Exadata, Autonomous Data Warehouse benefits from faster performance and, according to an IDC report (PDF), lowers operational costs by an average of 63%.
Autonomous Database provides the foundation for a data lakehouse—a modern, open architecture that enables you to store, analyze, and understand all your data. The data lakehouse combines the power and richness of data warehouses with the breadth, flexibility, and low cost of popular open source data lake technologies. Access your data lakehouse through Autonomous Database using the world's most powerful and open SQL processing engine.
Snowflake is a cloud-based data warehousing solution for storing and processing data, generating reports and dashboards, and as a BI reporting source. It is used for optimizing costs and using financial data, as well as for migrating data from on-premises to the cloud. The solution is often used as a centralized data warehouse, combining data from multiple sources.
Snowflake has helped organizations improve query performance, store and process JSON and XML, consolidate multiple databases into one unified table, power company-wide dashboards, increase productivity, reduce processing time, and have easy maintenance with good technical support.
Its platform is made up of three components:
Snowflake has many valuable vital features. Some of the most useful ones include:
There are many benefits to implementing Snowflake. It helps optimize costs, reduce downtime, improve operational efficiency, and automate data replication for fast recovery, and it is built for high reliability and availability.
Below are quotes from interviews we conducted with users currently using the Snowflake solution:
Sreenivasan R., Director of Data Architecture and Engineering at Decision Minds, says, "Data sharing is a good feature. It is a majorly used feature. The elastic computing is another big feature. Separating computing and storage gives you flexibility. It doesn't require much DBA involvement because it doesn't need any performance tuning. We are not doing any performance tuning, and the entire burden of performance and SQL tuning is on Snowflake. Its usability is very good. I don't need to ramp up any user, and its onboarding is easier. You just onboard the user, and you are done with it. There are simple SQL and UI, and people are able to use this solution easily. Ease of use is a big thing in Snowflake."
A director of business operations at a logistics company mentions, "It requires no maintenance on our part. They handle all that. The speed is phenomenal. The pricing isn't really anything more than what you would be paying for a SQL server license or another tool to execute the same thing. We have zero maintenance on our side to do anything and the speed at which it performs queries and loads the data is amazing. It handles unstructured data extremely well, too. So, if the data is in a JSON array or an XML, it handles that super well."
A Solution Architect at a wholesaler/distributor comments, "The ability to share the data and the ability to scale up and down easily are the most valuable features. The concept of data sharing and data plumbing made it very easy to provide and share data. The ability to refresh your Dev or QA just by doing a clone is also valuable. It has the dynamic scale up and scale down feature. Development and deployment are much easier as compared to other platforms where you have to go through a lot of stuff. With a tool like DBT, you can do modeling and transformation within a single tool and deploy to Snowflake. It provides continuous deployment and continuous integration abilities. There is a separation of storage and compute, so you only get charged for your usage. You only pay for what you use. When we share the data downstream with business partners, we can specifically create compute for them, and we can charge back the business."
We monitor all Cloud Data Warehouse reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.