Try our new research platform with insights from 80,000+ expert users

Apache Spark Streaming vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark Streaming
Ranking in Streaming Analytics
10th
Average Rating
8.0
Reviews Sentiment
7.4
Number of Reviews
11
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
91
Ranking in other categories
Cloud Data Warehouse (8th), Data Science Platforms (1st)
 

Mindshare comparison

As of July 2025, in the Streaming Analytics category, the mindshare of Apache Spark Streaming is 2.6%, down from 3.7% compared to the previous year. The mindshare of Databricks is 14.2%, up from 11.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Oscar Estorach - PeerSpot reviewer
Versatile and flexible when dealing with large-scale data streams
What I like about Spark is its versatility in supporting multiple languages and that makes it my preferred choice for building scalable and efficient systems, whether it is hooking databases with web applications or handling large-scale data transformations. Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows. It works well in the cloud, and you can structure data using Databricks or Spark, providing flexibility for different projects. Spark Streaming's flexibility shines when dealing with large-scale data streams. It caters to different needs, offering real-time insights for tasks like online sales analytics. The ability to prioritize data streams is valuable, especially for monitoring competitor prices online.
ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Apache Spark Streaming has features like checkpointing and Streaming API that are useful."
"As an open-source solution, using it is basically free."
"The solution is very stable and reliable."
"Apache Spark's capabilities for machine learning are quite extensive and can be used in a low-code way."
"Spark Streaming is critical, quite stable, full-featured, and scalable."
"The platform’s most valuable feature for processing real-time data is its ability to handle continuous data streams."
"It's the fastest solution on the market with low latency data on data transformations."
"Apache Spark Streaming was straightforward in terms of maintenance. It was actively developed, and migrating from an older to a newer version was quite simple."
"The main features of the solution are efficiency."
"I like that Databricks is a unified platform that lets you do streaming and batch processing in the same place. You can do analytics, too. They have added something called Databricks SQL Analytics, allowing users to connect to the data lake to perform analytics. Databricks also will enable you to share your data securely. It integrates with your reporting system as well."
"The Delta Lake data type has been the most useful part of this solution. Delta Lake is an opensource data type and it was implemented and invented by Databricks."
"The initial setup is pretty easy."
"The processing capacity is tremendous in the database."
"There are good features for turning off clusters."
"Databricks gives us the ability to build a lakehouse framework and do everything implicit to this type of database structure. We also like the ability to stream events. Databricks covers a broad spectrum, from reporting and machine learning to streaming events. It's important for us to have all these features in one platform."
"The most valuable feature of Databricks is the notebook, data factory, and ease of use."
 

Cons

"We don't have enough experience to be judgmental about its flaws."
"Integrating event-level streaming capabilities could be beneficial."
"There could be an improvement in the area of the user configuration section, it should be less developer-focused and more business user-focused."
"The service structure of Apache Spark Streaming can improve. There are a lot of issues with memory management and latency. There is no real-time analytics. We recommend it for the use cases where there is a five-second latency, but not for a millisecond, an IOT-based, or the detection anomaly-based. Flink as a service is much better."
"The debugging aspect could use some improvement."
"We would like to have the ability to do arbitrary stateful functions in Python."
"In terms of improvement, the UI could be better."
"The initial setup is quite complex."
"Databricks could improve in some of its functionality."
"I would like it if Databricks made it easier to set up a project."
"I would like it if Databricks adopted an interface more like R Studio. When I create a data frame or a table, R Studio provides a preview of the data. In R Studio, I can see that it created a table with so many columns or rows. Then I can click on it and open a preview of that data."
"Databricks requires writing code in Python or SQL, so if you're a good programmer then you can use Databricks."
"I would love an integration in my desktop IDE. For now, I have to code on their webpage."
"Databricks has a lack of debuggers, and it would be good to see more components."
"This solution only supports queries in SQL and Python, which is a bit limiting."
"As a data engineer, I see cluster failure in our Databricks user databases as a major issue."
 

Pricing and Cost Advice

"People pay for Apache Spark Streaming as a service."
"I was using the open-source community version, which was self-hosted."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"Spark is an affordable solution, especially considering its open-source nature."
"Licensing on site I would counsel against, as on-site hardware issues tend to really delay and slow down delivery."
"Whenever we want to find the actual costing, we have to send an email to Databricks, so having the information available on the internet would be helpful."
"I rate the price of Databricks as eight out of ten."
"The licensing costs of Databricks depend on how many licenses we need, depending on which Databricks provides a lot of discounts."
"The price is okay. It's competitive."
"The solution is a good value for batch processing and huge workloads."
"I would rate the tool’s pricing an eight out of ten."
"The cost is around $600,000 for 50 users."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
861,524 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
26%
Computer Software Company
23%
University
5%
Manufacturing Company
5%
Financial Services Firm
17%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
We don't have enough experience to be judgmental about its flaws, as we've only used stable features like batch micro-batch. Integration poses no problem; however, I don't use some features and can...
What is your primary use case for Apache Spark Streaming?
We use Spark Streaming in a micro-batch region. It's not a full real-time system, but it offers high performance and low latency.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Also Known As

Spark Streaming
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Apache Spark Streaming vs. Databricks and other solutions. Updated: June 2025.
861,524 professionals have used our research since 2012.