Try our new research platform with insights from 80,000+ expert users

Apache Spark Streaming vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark Streaming
Ranking in Streaming Analytics
10th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
16
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
91
Ranking in other categories
Cloud Data Warehouse (9th), Data Science Platforms (1st)
 

Mindshare comparison

As of September 2025, in the Streaming Analytics category, the mindshare of Apache Spark Streaming is 3.6%, up from 3.5% compared to the previous year. The mindshare of Databricks is 13.1%, up from 12.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Databricks13.1%
Apache Spark Streaming3.6%
Other83.3%
Streaming Analytics
 

Featured Reviews

Himansu Jena - PeerSpot reviewer
Efficient real-time data management and analysis with advanced features
There are various ways we can improve Apache Spark Streaming through best practices. The initial part requires attention to batch interval tuning, which helps small intervals in micro batches based on latency requirements and helps prevent back pressure. We can use data formats such as Parquet or ORC for storage that needs faster reads and leveraging feature predicate push-down optimizations. We can implement serialization which helps with any Kyro in terms of .NET or Java. We have boxing and unboxing serialization for XML and JSON for converting key-pair values stored in browser. We can also implement caching mechanisms for storing and recomputing multiple operations. We can use specified joins which help with smaller databases, and distributed joins can minimize users. We can implement project optimization memory for CPU efficiency, known as Tungsten. Additionally, load balancing, checkpointing, and schema evaluation are areas to consider based on performance and bottlenecks. We can use Bugzilla tools for tracking and Splunk to monitor the performance of process systems, utilization, and performance based on data frames or data sets.
ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution is very stable and reliable."
"It's the fastest solution on the market with low latency data on data transformations."
"By integrating Apache Spark Streaming, the data freshness rate, and latency have significantly improved from 24-hour batch processing to less than one minute, facilitating faster communication to downstream systems, aiding marketing campaigns."
"As an open-source solution, using it is basically free."
"With Apache Spark Streaming's integration with Anaconda and Miniconda with Python, I interact with databases using data frames or data sets in micro versions and create solutions based on business expectations for decision-making, logistic regression, linear regression, or machine learning which provides image or voice record and graphical data for improved accuracy."
"Apache Spark's capabilities for machine learning are quite extensive and can be used in a low-code way."
"For Apache Spark Streaming, the feature I appreciated most is that it provides live data delivery; additionally, it provides the capability to send a larger amount of data in parallel."
"Apache Spark Streaming has features like checkpointing and Streaming API that are useful."
"In the manufacturing industry, Databricks can be beneficial to use because of machine learning. It is useful for tasks, such as product analysis or predictive maintenance."
"I like that Databricks is a unified platform that lets you do streaming and batch processing in the same place. You can do analytics, too. They have added something called Databricks SQL Analytics, allowing users to connect to the data lake to perform analytics. Databricks also will enable you to share your data securely. It integrates with your reporting system as well."
"It can send out large data amounts."
"Databricks' Lakehouse architecture has been most useful for us. The data governance has been absolutely efficient in between other kinds of solutions."
"The initial setup phase of Databricks was good."
"I work in the data science field and I found Databricks to be very useful."
"The ease of use and its accessibility are valuable."
"The solution offers a free community version."
 

Cons

"While it is reliable, there are some issues with Apache Spark Streaming as it is not 100% reliable."
"The solution itself could be easier to use."
"When dealing with various data types including COBOL, Excel, JSON, video, audio, and MPG files, challenges can arise with incomplete or missing values."
"The downside is when you have this the other way around in the columns, it becomes really hard to use."
"Monitoring is an area where they could definitely improve Apache Spark Streaming. When you have a streaming application, it generates numerous logs. After some time, the logs become meaningless because they're quite large and impossible to open."
"The debugging aspect could use some improvement."
"It was resource-intensive, even for small-scale applications."
"In terms of improvement, the UI could be better."
"CI/CD needs additional leverage and support."
"One area of improvement is the Databricks File System (DBFS), where command-line challenges arise when accessing files. Standardization of file paths on the system could help, as engineers sometimes struggle."
"The interface of Databricks could be easier to use when compared to other solutions. It is not easy for non-data scientists. The user interface is important before we had to write code manually and as solutions move to "No code AI" it is critical that the interface is very good."
"The data visualization for this solution could be improved. They have started to roll out a data visualization tool inside Databricks but it is in the early stages. It's not comparable to a solution like Power BI, Luca, or Tableau."
"Generative AI is catching up in areas like data governance and enterprise flavor. Hence, these are places where Databricks has to be faster."
"Databricks is an analytics platform. It should offer more data science. It should have more features for data scientists to work with."
"There would also be benefits if more options were available for workers, or the clusters of the two points."
"The tool should improve its integration with other products."
 

Pricing and Cost Advice

"Spark is an affordable solution, especially considering its open-source nature."
"I was using the open-source community version, which was self-hosted."
"People pay for Apache Spark Streaming as a service."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"Databricks' cost could be improved."
"We pay as we go, so there isn't a fixed price. It's charged by the unit. I don't have any details detail about how they measure this, but it should be a mix between processing and quantity of data handled. We run a simulation based on our use cases, which gives us an estimate. We've been monitoring this, and the costs have met our expectations."
"We only pay for the Azure compute behind the solution."
"The price of Databricks is reasonable compared to other solutions."
"The licensing costs of Databricks depend on how many licenses we need, depending on which Databricks provides a lot of discounts."
"Databricks uses a price-per-use model, where you can use as much compute as you need."
"The billing of Databricks can be difficult and should improve."
"I would rate the tool’s pricing an eight out of ten."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
867,497 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
23%
Financial Services Firm
21%
Healthcare Company
5%
University
5%
Financial Services Firm
17%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business8
Midsize Enterprise2
Large Enterprise7
By reviewers
Company SizeCount
Small Business25
Midsize Enterprise12
Large Enterprise56
 

Questions from the Community

What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
There are various ways we can improve Apache Spark Streaming through best practices. The initial part requires attention to batch interval tuning, which helps small intervals in micro batches based...
What is your primary use case for Apache Spark Streaming?
I use Apache Spark Streaming for GIS (Graphical Information System), satellite imaging processing, image processing, longitude, latitude, and predicting electricity, road, and transformations in th...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Also Known As

Spark Streaming
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Apache Spark Streaming vs. Databricks and other solutions. Updated: July 2025.
867,497 professionals have used our research since 2012.