Try our new research platform with insights from 80,000+ expert users

Apache Spark Streaming vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark Streaming
Ranking in Streaming Analytics
7th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
17
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
91
Ranking in other categories
Cloud Data Warehouse (9th), Data Science Platforms (1st)
 

Mindshare comparison

As of October 2025, in the Streaming Analytics category, the mindshare of Apache Spark Streaming is 3.6%, up from 3.4% compared to the previous year. The mindshare of Databricks is 12.5%, down from 12.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Databricks12.5%
Apache Spark Streaming3.6%
Other83.9%
Streaming Analytics
 

Featured Reviews

Himansu Jena - PeerSpot reviewer
Efficient real-time data management and analysis with advanced features
There are various ways we can improve Apache Spark Streaming through best practices. The initial part requires attention to batch interval tuning, which helps small intervals in micro batches based on latency requirements and helps prevent back pressure. We can use data formats such as Parquet or ORC for storage that needs faster reads and leveraging feature predicate push-down optimizations. We can implement serialization which helps with any Kyro in terms of .NET or Java. We have boxing and unboxing serialization for XML and JSON for converting key-pair values stored in browser. We can also implement caching mechanisms for storing and recomputing multiple operations. We can use specified joins which help with smaller databases, and distributed joins can minimize users. We can implement project optimization memory for CPU efficiency, known as Tungsten. Additionally, load balancing, checkpointing, and schema evaluation are areas to consider based on performance and bottlenecks. We can use Bugzilla tools for tracking and Splunk to monitor the performance of process systems, utilization, and performance based on data frames or data sets.
ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"As an open-source solution, using it is basically free."
"I appreciate Apache Spark Streaming's micro-batching capabilities; the watermarking functionality and related features are quite good."
"Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows."
"For Apache Spark Streaming, the feature I appreciated most is that it provides live data delivery; additionally, it provides the capability to send a larger amount of data in parallel."
"With Apache Spark Streaming's integration with Anaconda and Miniconda with Python, I interact with databases using data frames or data sets in micro versions and create solutions based on business expectations for decision-making, logistic regression, linear regression, or machine learning which provides image or voice record and graphical data for improved accuracy."
"Apache Spark Streaming's most valuable feature is near real-time analytics. The developers can build APIs easily for a code-steaming pipeline. The solutions have an ecosystem of integration with other stock services."
"The solution is better than average and some of the valuable features include efficiency and stability."
"The main benefits of Apache Spark Streaming include cost savings, time savings, and efficiency improvements about data storage."
"Databricks makes it really easy to use a number of technologies to do data analysis. In terms of languages, we can use Scala, Python, and SQL. Databricks enables you to run very large queries, at a massive scale, within really good timeframes."
"It is fast, it's scalable, and it does the job it needs to do."
"Can cut across the entire ecosystem of open source technology to give an extra level of getting the transformatory process of the data."
"The initial setup is pretty easy."
"The solution is easy to use and has a quick start-up time due to being on the cloud."
"We can scale the product."
"The time travel feature is the solution's most valuable aspect."
"Databricks offers various courses that I can use, whether it's PySpark, Scala, or R."
 

Cons

"It was resource-intensive, even for small-scale applications."
"The problem is we need to use it in a certain manner. After that, we need to apply another pipeline for the machine learning processes, and that's what we work on."
"The solution itself could be easier to use."
"One improvement I would expect is real-time processing instead of micro-batch or near real-time."
"The downside is when you have this the other way around in the columns, it becomes really hard to use."
"The cost and load-related optimizations are areas where the tool lacks and needs improvement."
"When dealing with various data types including COBOL, Excel, JSON, video, audio, and MPG files, challenges can arise with incomplete or missing values."
"When dealing with various data types including COBOL, Excel, JSON, video, audio, and MPG files, challenges can arise with incomplete or missing values."
"The connectivity with various BI tools could be improved, specifically the performance and real time integration."
"Databricks doesn't offer the use of Python scripts by itself and is not connected to GitHub repositories or anything similar. This is something that is missing. if they could integrate with Git tools it would be an advantage."
"Databricks has added some alerts and query functionality into their SQL persona, but the whole SQL persona, which is like a role, needs a lot of development. The alerts are not very flexible, and the query interface itself is not as polished as the notebook interface that is used through the data science and machine learning persona. It is clunky at present."
"I would like it if Databricks adopted an interface more like R Studio. When I create a data frame or a table, R Studio provides a preview of the data. In R Studio, I can see that it created a table with so many columns or rows. Then I can click on it and open a preview of that data."
"A lot of people are required to manage this solution."
"Databricks' technical support takes a while to respond and could be improved."
"Would be helpful to have additional licensing options."
"The integration and query capabilities can be improved."
 

Pricing and Cost Advice

"I was using the open-source community version, which was self-hosted."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"People pay for Apache Spark Streaming as a service."
"Spark is an affordable solution, especially considering its open-source nature."
"There are different versions."
"It is an expensive tool. The licensing model is a pay-as-you-go one."
"We implement this solution on behalf of our customers who have their own Azure subscription and they pay for Databricks themselves. The pricing is more expensive if you have large volumes of data."
"Whenever we want to find the actual costing, we have to send an email to Databricks, so having the information available on the internet would be helpful."
"The licensing costs of Databricks depend on how many licenses we need, depending on which Databricks provides a lot of discounts."
"The basic version of this solution is now open-source, so there are no license costs involved. However, there is a charge for any advanced functionality and this can be quite expensive."
"We have only incurred the cost of our AWS cloud services. This is because during this period, Databricks provided us with an extended evaluation period, and we have not spent much money yet. We are just starting to incur costs this month, I will know more later on the full cost perspective."
"I would rate Databricks' pricing seven out of ten."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
872,019 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
22%
Financial Services Firm
20%
Healthcare Company
7%
University
5%
Financial Services Firm
18%
Computer Software Company
9%
Manufacturing Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise7
By reviewers
Company SizeCount
Small Business25
Midsize Enterprise12
Large Enterprise56
 

Questions from the Community

What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
One of the improvements we need is in Spark SQL and the machine learning library. I don't think there is too much to work on, but the issue is when we want to use machine learning, we always need t...
What is your primary use case for Apache Spark Streaming?
We work with Apache Spark Streaming for our project because we use that as one of the landing data sources, and we work with it to ensure we can get all of the data before it goes through our data ...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Also Known As

Spark Streaming
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Apache Spark Streaming vs. Databricks and other solutions. Updated: September 2025.
872,019 professionals have used our research since 2012.