Try our new research platform with insights from 80,000+ expert users

Apache Spark Streaming vs Informatica Data Engineering Streaming comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark Streaming
Ranking in Streaming Analytics
10th
Average Rating
8.0
Reviews Sentiment
7.4
Number of Reviews
11
Ranking in other categories
No ranking in other categories
Informatica Data Engineerin...
Ranking in Streaming Analytics
16th
Average Rating
8.0
Reviews Sentiment
6.4
Number of Reviews
1
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of April 2025, in the Streaming Analytics category, the mindshare of Apache Spark Streaming is 2.7%, down from 3.8% compared to the previous year. The mindshare of Informatica Data Engineering Streaming is 1.4%, up from 0.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

AbhishekGupta - PeerSpot reviewer
Easy integration, beneficial auto-scaling, and good open-sourced support community
The service structure of Apache Spark Streaming can improve. There are a lot of issues with memory management and latency. There is no real-time analytics. We recommend it for the use cases where there is a five-second latency, but not for a millisecond, an IOT-based, or the detection anomaly-based. Flink as a service is much better. Apache Spark Streaming does not have auto-tuning. A customer needs to invest a lot, in terms of management and maintenance.
DK
Helps with real-time data processing and improves decision-making overall
It improves decision-making overall for the company. Informatica is usually the tool for setting up the data, streaming the data into your data warehouse from your source, transforming the data, and preparing and modeling it into some desired format. It improves the performance. You need to know how to use it and how to implement it, but it improves performance.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Apache Spark Streaming was straightforward in terms of maintenance. It was actively developed, and migrating from an older to a newer version was quite simple."
"It's the fastest solution on the market with low latency data on data transformations."
"As an open-source solution, using it is basically free."
"Apache Spark Streaming's most valuable feature is near real-time analytics. The developers can build APIs easily for a code-steaming pipeline. The solutions have an ecosystem of integration with other stock services."
"Spark Streaming is critical, quite stable, full-featured, and scalable."
"Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows."
"The solution is very stable and reliable."
"The platform’s most valuable feature for processing real-time data is its ability to handle continuous data streams."
"It improves the performance."
 

Cons

"Integrating event-level streaming capabilities could be beneficial."
"The initial setup is quite complex."
"It was resource-intensive, even for small-scale applications."
"There could be an improvement in the area of the user configuration section, it should be less developer-focused and more business user-focused."
"The cost and load-related optimizations are areas where the tool lacks and needs improvement."
"In terms of improvement, the UI could be better."
"The service structure of Apache Spark Streaming can improve. There are a lot of issues with memory management and latency. There is no real-time analytics. We recommend it for the use cases where there is a five-second latency, but not for a millisecond, an IOT-based, or the detection anomaly-based. Flink as a service is much better."
"We don't have enough experience to be judgmental about its flaws."
"Skill requirement is required. There is a learning curve."
 

Pricing and Cost Advice

"Spark is an affordable solution, especially considering its open-source nature."
"I was using the open-source community version, which was self-hosted."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"People pay for Apache Spark Streaming as a service."
Information not available
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
848,253 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
28%
Computer Software Company
19%
Manufacturing Company
6%
University
5%
Financial Services Firm
24%
Manufacturing Company
15%
Computer Software Company
14%
Educational Organization
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
We don't have enough experience to be judgmental about its flaws, as we've only used stable features like batch micro-batch. Integration poses no problem; however, I don't use some features and can...
What is your primary use case for Apache Spark Streaming?
We use Spark Streaming in a micro-batch region. It's not a full real-time system, but it offers high performance and low latency.
What needs improvement with Informatica Data Engineering Streaming?
Skill requirement is required. There is a learning curve.
What is your primary use case for Informatica Data Engineering Streaming?
We implement business intelligence solutions, including data warehousing tools, data integration to load data into warehouses, and then creating reports.
What advice do you have for others considering Informatica Data Engineering Streaming?
Overall, I would rate the solution an eight out of ten. Usually, Informatica is for big clients because of its pricing, and it also requires some skill sets. It requires investment into a proper da...
 

Also Known As

Spark Streaming
Big Data Streaming, Informatica Intelligent Streaming, Intelligent Streaming
 

Overview

 

Sample Customers

UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Jewelry TV
Find out what your peers are saying about Databricks, Amazon Web Services (AWS), Microsoft and others in Streaming Analytics. Updated: March 2025.
848,253 professionals have used our research since 2012.