Try our new research platform with insights from 80,000+ expert users

Amazon Kinesis vs Apache Spark Streaming comparison

 

Comparison Buyer's Guide

Executive Summary
 

Categories and Ranking

Amazon Kinesis
Ranking in Streaming Analytics
2nd
Average Rating
8.0
Reviews Sentiment
7.0
Number of Reviews
27
Ranking in other categories
No ranking in other categories
Apache Spark Streaming
Ranking in Streaming Analytics
9th
Average Rating
8.0
Reviews Sentiment
6.2
Number of Reviews
10
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of November 2024, in the Streaming Analytics category, the mindshare of Amazon Kinesis is 10.6%, down from 15.4% compared to the previous year. The mindshare of Apache Spark Streaming is 3.7%, down from 4.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Rajni Kumar Jha - PeerSpot reviewer
Used for media streaming and live-streaming data
It is not compulsory to use Amazon Kinesis. If you don't want to use the data streaming, you can use just the Kinesis data firehose. Using the Kinesis data firehose is compulsory because we can't store all chats and recordings in Amazon S3 without it. When a call comes in the Amazon Kinesis instance, it will go to Data Streams if we use it. Otherwise, it will go to the Kinesis data firehose, where we need to define the S3 bucket path, and it will go to Amazon S3. So, without the Kinesis data firehose, we can't store all the chats and recordings in Amazon S3. Using Amazon Kinesis totally depends upon the user's requirements. If you want to use live streaming for the data lake or data analyst team, you need to use Amazon Kinesis. If you don't want to use it, you can directly use the Kinesis data firehose, which will be stored in Amazon S3. Overall, I rate the solution an eight out of ten.
Oscar Estorach - PeerSpot reviewer
Versatile and flexible when dealing with large-scale data streams
What I like about Spark is its versatility in supporting multiple languages and that makes it my preferred choice for building scalable and efficient systems, whether it is hooking databases with web applications or handling large-scale data transformations. Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows. It works well in the cloud, and you can structure data using Databricks or Spark, providing flexibility for different projects. Spark Streaming's flexibility shines when dealing with large-scale data streams. It caters to different needs, offering real-time insights for tasks like online sales analytics. The ability to prioritize data streams is valuable, especially for monitoring competitor prices online.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The management and analytics are valuable features."
"Amazon Kinesis also provides us with plenty of flexibility."
"The solution's technical support is flawless."
"There is no problem with the tool's stability."
"I have worked in companies that build tools in-house. They face scaling challenges."
"From my experience, one of the most valuable features is the ability to track silent events on endpoints. Previously, these events might have gone unnoticed, but now we can access them within the product range. For example, if a customer reports that their calls are not reaching the portal files, we can use this feature to troubleshoot and optimize the system."
"Everything is hosted and simple."
"Great auto-scaling, auto-sharing, and auto-correction features."
"It's the fastest solution on the market with low latency data on data transformations."
"The platform’s most valuable feature for processing real-time data is its ability to handle continuous data streams."
"As an open-source solution, using it is basically free."
"The solution is better than average and some of the valuable features include efficiency and stability."
"Apache Spark Streaming was straightforward in terms of maintenance. It was actively developed, and migrating from an older to a newer version was quite simple."
"The solution is very stable and reliable."
"Apache Spark Streaming has features like checkpointing and Streaming API that are useful."
"Apache Spark Streaming's most valuable feature is near real-time analytics. The developers can build APIs easily for a code-steaming pipeline. The solutions have an ecosystem of integration with other stock services."
 

Cons

"Kinesis Data Analytics needs to be improved somewhat. It's SQL based data but it is not as user friendly as MySQL or Athena tools."
"If there were better documentation on optimal sharding strategies then it would be helpful."
"One area for improvement in the solution is the file size limitation of 10 Mb. My company works with files with a larger file size. The batch size and throughput also need improvement in Amazon Kinesis."
"Something else to mention is that we use Kinesis with Lambda a lot and the fact that you can only connect one Stream to one Lambda, I find is a limiting factor. I would definitely recommend to remove that constraint."
"There could be valid data in Kinesis that is not being processed, which affects stability. Although it rarely happens, this issue has been observed in many deployments, making it not completely stable."
"I think the default settings are far too low."
"Kinesis is good for Amazon Cloud but not as suitable for other cloud vendors."
"It would be beneficial if Amazon Kinesis provided document based support on the internet to be able to read the data from the Kinesis site."
"The service structure of Apache Spark Streaming can improve. There are a lot of issues with memory management and latency. There is no real-time analytics. We recommend it for the use cases where there is a five-second latency, but not for a millisecond, an IOT-based, or the detection anomaly-based. Flink as a service is much better."
"The solution itself could be easier to use."
"The cost and load-related optimizations are areas where the tool lacks and needs improvement."
"In terms of improvement, the UI could be better."
"The initial setup is quite complex."
"We would like to have the ability to do arbitrary stateful functions in Python."
"It was resource-intensive, even for small-scale applications."
"There could be an improvement in the area of the user configuration section, it should be less developer-focused and more business user-focused."
 

Pricing and Cost Advice

"The fee is based on the number of hours the service is running."
"The solution's pricing is fair."
"The product falls on a bit of an expensive side."
"Amazon Kinesis pricing is sometimes reasonable and sometimes could be better, depending on the planning, so it's a five out of ten for me."
"Under $1,000 per month."
"Amazon Kinesis is an expensive solution."
"I rate the product price a five on a scale of one to ten, where one is cheap, and ten is expensive."
"The tool's entry price is cheap. However, pricing increases with data volume."
"I was using the open-source community version, which was self-hosted."
"People pay for Apache Spark Streaming as a service."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"Spark is an affordable solution, especially considering its open-source nature."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
816,406 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
18%
Financial Services Firm
18%
Manufacturing Company
10%
Retailer
4%
Financial Services Firm
22%
Computer Software Company
20%
University
6%
Manufacturing Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Amazon Kinesis?
Amazon Kinesis's main purpose is to provide near real-time data streaming at a consistent 2Mbps rate, which is really impressive.
What is your experience regarding pricing and costs for Amazon Kinesis?
I think for us, with Amazon Kinesis, if we have to set up our own Kafka or cluster, it will be very time-consuming. If one considers the aforementioned aspect, Amazon Kinesis is a cheap tool.
What needs improvement with Amazon Kinesis?
There are some kind of hard limits on Amazon Kinesis, and if you hit that, then you will get the throughput exceed error. We have to deal with and reduce how many consumers are hitting Amazon Kines...
What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
The product's event handling capabilities, particularly compared to Kaspersky, need improvement. Integrating event-level streaming capabilities could be beneficial. This aligns with the idea of exp...
What is your primary use case for Apache Spark Streaming?
I've used it more for ETL. It's useful for creating data pipelines, streaming datasets, generating synthetic data, synchronizing data, creating data lakes, and loading and unloading data is fast an...
 

Also Known As

Amazon AWS Kinesis, AWS Kinesis, Kinesis
Spark Streaming
 

Overview

 

Sample Customers

Zillow, Netflix, Sonos
UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Find out what your peers are saying about Amazon Kinesis vs. Apache Spark Streaming and other solutions. Updated: October 2024.
816,406 professionals have used our research since 2012.