Try our new research platform with insights from 80,000+ expert users

Amazon Kinesis vs Apache Spark Streaming comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon Kinesis
Ranking in Streaming Analytics
2nd
Average Rating
8.0
Reviews Sentiment
7.1
Number of Reviews
27
Ranking in other categories
No ranking in other categories
Apache Spark Streaming
Ranking in Streaming Analytics
10th
Average Rating
8.0
Reviews Sentiment
7.4
Number of Reviews
11
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of February 2025, in the Streaming Analytics category, the mindshare of Amazon Kinesis is 9.1%, down from 14.3% compared to the previous year. The mindshare of Apache Spark Streaming is 3.1%, down from 3.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Rajni Kumar Jha - PeerSpot reviewer
Used for media streaming and live-streaming data
It is not compulsory to use Amazon Kinesis. If you don't want to use the data streaming, you can use just the Kinesis data firehose. Using the Kinesis data firehose is compulsory because we can't store all chats and recordings in Amazon S3 without it. When a call comes in the Amazon Kinesis instance, it will go to Data Streams if we use it. Otherwise, it will go to the Kinesis data firehose, where we need to define the S3 bucket path, and it will go to Amazon S3. So, without the Kinesis data firehose, we can't store all the chats and recordings in Amazon S3. Using Amazon Kinesis totally depends upon the user's requirements. If you want to use live streaming for the data lake or data analyst team, you need to use Amazon Kinesis. If you don't want to use it, you can directly use the Kinesis data firehose, which will be stored in Amazon S3. Overall, I rate the solution an eight out of ten.
AbhishekGupta - PeerSpot reviewer
Easy integration, beneficial auto-scaling, and good open-sourced support community
The service structure of Apache Spark Streaming can improve. There are a lot of issues with memory management and latency. There is no real-time analytics. We recommend it for the use cases where there is a five-second latency, but not for a millisecond, an IOT-based, or the detection anomaly-based. Flink as a service is much better. Apache Spark Streaming does not have auto-tuning. A customer needs to invest a lot, in terms of management and maintenance.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I like the ease of use and how we can quickly get the configurations done, making it pretty straightforward and stable."
"The product's initial setup phase is not difficult because we are using the tool on the cloud."
"The most valuable feature is that it has a pretty robust way of capturing things."
"I find almost all features valuable, especially the timing and fast pace movement."
"The scalability is pretty good."
"Everything is hosted and simple."
"From my experience, one of the most valuable features is the ability to track silent events on endpoints. Previously, these events might have gone unnoticed, but now we can access them within the product range. For example, if a customer reports that their calls are not reaching the portal files, we can use this feature to troubleshoot and optimize the system."
"Its scalability is very high. There is no maintenance and there is no throughput latency. I think data scalability is high, too. You can ingest gigabytes of data within seconds or milliseconds."
"Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows."
"The solution is very stable and reliable."
"It's the fastest solution on the market with low latency data on data transformations."
"Apache Spark Streaming was straightforward in terms of maintenance. It was actively developed, and migrating from an older to a newer version was quite simple."
"Spark Streaming is critical, quite stable, full-featured, and scalable."
"Apache Spark Streaming has features like checkpointing and Streaming API that are useful."
"As an open-source solution, using it is basically free."
"The solution is better than average and some of the valuable features include efficiency and stability."
 

Cons

"Amazon Kinesis should improve its limits."
"I suggest integrating additional features, such as incorporating Amazon Pinpoint or Amazon Connect as bundled offerings, rather than deploying them as separate services."
"Kinesis is good for Amazon Cloud but not as suitable for other cloud vendors."
"The solution has a two-minute maximum time delay for live streaming, which could be reduced."
"The services which are described in the documentation could use some visual presentation because for someone who is new to the solution the documentation is not easy to follow or beginner friendly and can leave a person feeling helpless."
"In general, the pain point for us was that once the data gets into Kinesis there is no way for us to understand what's happening because Kinesis divides everything into shards. So if we wanted to understand what's happening with a particular shard, whether it is published or not, we could not. Even with the logs, if we want to have some kind of logging it is in the shard."
"There are some kind of hard limits on Amazon Kinesis, and if you hit that, then you will get the throughput exceed error."
"For me, especially with video streams, there's sometimes a kind of delay when the data has to be pumped to other services. This delay could be improved in Kinesis, or especially the Kinesis Video Streams, which is being used for different use cases for Amazon Connect. With that improvement, a lot of other use cases of Amazon Connect integrating with third-party analytic tools would be easier."
"The initial setup is quite complex."
"It was resource-intensive, even for small-scale applications."
"The service structure of Apache Spark Streaming can improve. There are a lot of issues with memory management and latency. There is no real-time analytics. We recommend it for the use cases where there is a five-second latency, but not for a millisecond, an IOT-based, or the detection anomaly-based. Flink as a service is much better."
"We don't have enough experience to be judgmental about its flaws."
"The solution itself could be easier to use."
"The debugging aspect could use some improvement."
"Integrating event-level streaming capabilities could be beneficial."
"The cost and load-related optimizations are areas where the tool lacks and needs improvement."
 

Pricing and Cost Advice

"Under $1,000 per month."
"In general, cloud services are very convenient to use, even if we have to pay a bit more, as we know what we are paying for and can focus on other tasks."
"The product falls on a bit of an expensive side."
"Amazon Kinesis is an expensive solution."
"The fee is based on the number of hours the service is running."
"The tool's entry price is cheap. However, pricing increases with data volume."
"I think for us, with Amazon Kinesis, if we have to set up our own Kafka or cluster, it will be very time-consuming. If one considers the aforementioned aspect, Amazon Kinesis is a cheap tool."
"Amazon Kinesis pricing is sometimes reasonable and sometimes could be better, depending on the planning, so it's a five out of ten for me."
"Spark is an affordable solution, especially considering its open-source nature."
"People pay for Apache Spark Streaming as a service."
"I was using the open-source community version, which was self-hosted."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
832,138 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
18%
Manufacturing Company
10%
Retailer
5%
Financial Services Firm
26%
Computer Software Company
20%
Manufacturing Company
6%
University
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Amazon Kinesis?
Amazon Kinesis's main purpose is to provide near real-time data streaming at a consistent 2Mbps rate, which is really impressive.
What is your experience regarding pricing and costs for Amazon Kinesis?
Amazon Kinesis is moderately priced. In comparison with other competitors, it is fairly priced, however, if they reduced the price a little, it could add more value to customers.
What needs improvement with Amazon Kinesis?
I do not see any scope for improvement as it does what it is supposed to do. No changes are required. Since it's predominantly a back-end service, any end-user isn't going to interact with it direc...
What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
We don't have enough experience to be judgmental about its flaws, as we've only used stable features like batch micro-batch. Integration poses no problem; however, I don't use some features and can...
What is your primary use case for Apache Spark Streaming?
We use Spark Streaming in a micro-batch region. It's not a full real-time system, but it offers high performance and low latency.
 

Also Known As

Amazon AWS Kinesis, AWS Kinesis, Kinesis
Spark Streaming
 

Overview

 

Sample Customers

Zillow, Netflix, Sonos
UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Find out what your peers are saying about Amazon Kinesis vs. Apache Spark Streaming and other solutions. Updated: January 2025.
832,138 professionals have used our research since 2012.