Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Apache Spark Streaming comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.6
Reviews Sentiment
6.9
Number of Reviews
16
Ranking in other categories
No ranking in other categories
Apache Spark Streaming
Ranking in Streaming Analytics
10th
Average Rating
8.0
Reviews Sentiment
7.4
Number of Reviews
11
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of March 2025, in the Streaming Analytics category, the mindshare of Apache Flink is 12.6%, up from 9.4% compared to the previous year. The mindshare of Apache Spark Streaming is 2.9%, down from 3.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Ilya Afanasyev - PeerSpot reviewer
A great solution with an intricate system and allows for batch data processing
We value this solution's intricate system because it comes with a state inside the mechanism and product. The system allows us to process batch data, stream to real-time and build pipelines. Additionally, we do not need to process data from the beginning when we pause, and we can continue from the same point where we stopped. It helps us save time as 95% of our pipelines will now be on Amazon, and we'll save money by saving time.
AbhishekGupta - PeerSpot reviewer
Easy integration, beneficial auto-scaling, and good open-sourced support community
The service structure of Apache Spark Streaming can improve. There are a lot of issues with memory management and latency. There is no real-time analytics. We recommend it for the use cases where there is a five-second latency, but not for a millisecond, an IOT-based, or the detection anomaly-based. Flink as a service is much better. Apache Spark Streaming does not have auto-tuning. A customer needs to invest a lot, in terms of management and maintenance.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The event processing function is the most useful or the most used function. The filter function and the mapping function are also very useful because we have a lot of data to transform. For example, we store a lot of information about a person, and when we want to retrieve this person's details, we need all the details. In the map function, we can actually map all persons based on their age group. That's why the mapping function is very useful. We can really get a lot of events, and then we keep on doing what we need to do."
"Easy to deploy and manage."
"It provides us the flexibility to deploy it on any cluster without being constrained by cloud-based limitations."
"This is truly a real-time solution."
"Apache Flink's best feature is its data streaming tool."
"The documentation is very good."
"The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. We use Apache Flink to control our clients' installations."
"Another feature is how Flink handles its radiuses. It has something called the checkpointing concept. You're dealing with billions and billions of requests, so your system is going to fail in large storage systems. Flink handles this by using the concept of checkpointing and savepointing, where they write the aggregated state into some separate storage. So in case of failure, you can basically recall from that state and come back."
"Apache Spark Streaming was straightforward in terms of maintenance. It was actively developed, and migrating from an older to a newer version was quite simple."
"Spark Streaming is critical, quite stable, full-featured, and scalable."
"The solution is better than average and some of the valuable features include efficiency and stability."
"Apache Spark Streaming has features like checkpointing and Streaming API that are useful."
"Apache Spark Streaming's most valuable feature is near real-time analytics. The developers can build APIs easily for a code-steaming pipeline. The solutions have an ecosystem of integration with other stock services."
"As an open-source solution, using it is basically free."
"The solution is very stable and reliable."
"The platform’s most valuable feature for processing real-time data is its ability to handle continuous data streams."
 

Cons

"Apache Flink should improve its data capability and data migration."
"The state maintains checkpoints and they use RocksDB or S3. They are good but sometimes the performance is affected when you use RocksDB for checkpointing."
"One way to improve Flink would be to enhance integration between different ecosystems. For example, there could be more integration with other big data vendors and platforms similar in scope to how Apache Flink works with Cloudera. Apache Flink is a part of the same ecosystem as Cloudera, and for batch processing it's actually very useful but for real-time processing there could be more development with regards to the big data capabilities amongst the various ecosystems out there."
"In terms of improvement, there should be better reporting. You can integrate with reporting solutions but Flink doesn't offer it themselves."
"PyFlink is not as fully featured as Python itself, so there are some limitations to what you can do with it."
"There is a learning curve. It takes time to learn."
"There is room for improvement in the initial setup process."
"We have a machine learning team that works with Python, but Apache Flink does not have full support for the language."
"It was resource-intensive, even for small-scale applications."
"The debugging aspect could use some improvement."
"The solution itself could be easier to use."
"The cost and load-related optimizations are areas where the tool lacks and needs improvement."
"We would like to have the ability to do arbitrary stateful functions in Python."
"We don't have enough experience to be judgmental about its flaws."
"The initial setup is quite complex."
"There could be an improvement in the area of the user configuration section, it should be less developer-focused and more business user-focused."
 

Pricing and Cost Advice

"It's an open-source solution."
"This is an open-source platform that can be used free of charge."
"Apache Flink is open source so we pay no licensing for the use of the software."
"The solution is open-source, which is free."
"It's an open source."
"People pay for Apache Spark Streaming as a service."
"I was using the open-source community version, which was self-hosted."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"Spark is an affordable solution, especially considering its open-source nature."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
839,319 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
23%
Computer Software Company
16%
Manufacturing Company
6%
Healthcare Company
5%
Financial Services Firm
26%
Computer Software Company
20%
Manufacturing Company
6%
University
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
There are more libraries that are missing and also maybe more capabilities for machine learning. It could have a friendly user interface for pipeline configuration, deployment, and monitoring.
What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
We don't have enough experience to be judgmental about its flaws, as we've only used stable features like batch micro-batch. Integration poses no problem; however, I don't use some features and can...
What is your primary use case for Apache Spark Streaming?
We use Spark Streaming in a micro-batch region. It's not a full real-time system, but it offers high performance and low latency.
 

Also Known As

Flink
Spark Streaming
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Find out what your peers are saying about Apache Flink vs. Apache Spark Streaming and other solutions. Updated: January 2025.
839,319 professionals have used our research since 2012.