Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Apache Spark Streaming comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Customer Service

Sentiment score
6.3
Users primarily depend on Apache Flink's community support and resources, occasionally opting for paid services for critical issues.
Sentiment score
7.1
Apache Spark Streaming's extensive documentation and community support effectively assist users, reducing the need for direct Apache help.
 

Setup Cost

Apache Spark Streaming is praised for cost-effectiveness, with open-source affordability and managed cloud services offering convenience at higher prices.
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.6
Reviews Sentiment
6.9
Number of Reviews
16
Ranking in other categories
No ranking in other categories
Apache Spark Streaming
Ranking in Streaming Analytics
10th
Average Rating
8.0
Reviews Sentiment
7.4
Number of Reviews
11
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of December 2024, in the Streaming Analytics category, the mindshare of Apache Flink is 12.1%, up from 10.8% compared to the previous year. The mindshare of Apache Spark Streaming is 3.6%, down from 4.6% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Sunil  Morya - PeerSpot reviewer
Easy to deploy and manage; lacking simple integration with Amazon products
The issue we had with Flink was that when you had to refer the schema into the input data stream, it had to be done directly into code. The XLS format where the schema is stored, had to be stored in Python. If the schema changes, you have to redeploy Flink because the basic tasks and jobs are already running. That's one disadvantage. Another was a restriction with Amazon's CloudFormation templates which don't allow for direct deployment in the private subnet. You have to deploy into the public subnet and then from the Amazon console, specify a different private subnet that requires a lot of settings. In general, the integration with Amazon products was not good and was very time-consuming. I'd like to think that has changed.
Oscar Estorach - PeerSpot reviewer
Versatile and flexible when dealing with large-scale data streams
What I like about Spark is its versatility in supporting multiple languages and that makes it my preferred choice for building scalable and efficient systems, whether it is hooking databases with web applications or handling large-scale data transformations. Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows. It works well in the cloud, and you can structure data using Databricks or Spark, providing flexibility for different projects. Spark Streaming's flexibility shines when dealing with large-scale data streams. It caters to different needs, offering real-time insights for tasks like online sales analytics. The ability to prioritize data streams is valuable, especially for monitoring competitor prices online.
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
824,053 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
23%
Computer Software Company
17%
Manufacturing Company
6%
Healthcare Company
5%
Financial Services Firm
24%
Computer Software Company
20%
Manufacturing Company
6%
University
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
There are more libraries that are missing and also maybe more capabilities for machine learning. It could have a friendly user interface for pipeline configuration, deployment, and monitoring.
What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
We don't have enough experience to be judgmental about its flaws, as we've only used stable features like batch micro-batch. Integration poses no problem; however, I don't use some features and can...
What is your primary use case for Apache Spark Streaming?
We use Spark Streaming in a micro-batch region. It's not a full real-time system, but it offers high performance and low latency.
 

Also Known As

Flink
Spark Streaming
 

Learn More

 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Find out what your peers are saying about Apache Flink vs. Apache Spark Streaming and other solutions. Updated: December 2024.
824,053 professionals have used our research since 2012.