Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Informatica Data Engineering Streaming comparison

 

Comparison Buyer's Guide

Executive Summary
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.6
Reviews Sentiment
6.9
Number of Reviews
16
Ranking in other categories
No ranking in other categories
Informatica Data Engineerin...
Ranking in Streaming Analytics
16th
Average Rating
8.0
Reviews Sentiment
6.4
Number of Reviews
1
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of December 2024, in the Streaming Analytics category, the mindshare of Apache Flink is 12.1%, up from 10.8% compared to the previous year. The mindshare of Informatica Data Engineering Streaming is 1.3%, up from 0.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Sunil  Morya - PeerSpot reviewer
Easy to deploy and manage; lacking simple integration with Amazon products
The issue we had with Flink was that when you had to refer the schema into the input data stream, it had to be done directly into code. The XLS format where the schema is stored, had to be stored in Python. If the schema changes, you have to redeploy Flink because the basic tasks and jobs are already running. That's one disadvantage. Another was a restriction with Amazon's CloudFormation templates which don't allow for direct deployment in the private subnet. You have to deploy into the public subnet and then from the Amazon console, specify a different private subnet that requires a lot of settings. In general, the integration with Amazon products was not good and was very time-consuming. I'd like to think that has changed.
DK
Helps with real-time data processing and improves decision-making overall
It improves decision-making overall for the company. Informatica is usually the tool for setting up the data, streaming the data into your data warehouse from your source, transforming the data, and preparing and modeling it into some desired format. It improves the performance. You need to know how to use it and how to implement it, but it improves performance.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"With Flink, it provides out-of-the-box checkpointing and state management. It helps us in that way. When Storm used to restart, sometimes we would lose messages. With Flink, it provides guaranteed message processing, which helped us. It also helped us with maintenance or restarts."
"The documentation is very good."
"It is user-friendly and the reporting is good."
"The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. We use Apache Flink to control our clients' installations."
"The top feature of Apache Flink is its low latency for fast, real-time data. Another great feature is the real-time indicators and alerts which make a big difference when it comes to data processing and analysis."
"The setup was not too difficult."
"It provides us the flexibility to deploy it on any cluster without being constrained by cloud-based limitations."
"Allows us to process batch data, stream to real-time and build pipelines."
"It improves the performance."
 

Cons

"In a future release, they could improve on making the error descriptions more clear."
"There are more libraries that are missing and also maybe more capabilities for machine learning."
"Apache Flink should improve its data capability and data migration."
"One way to improve Flink would be to enhance integration between different ecosystems. For example, there could be more integration with other big data vendors and platforms similar in scope to how Apache Flink works with Cloudera. Apache Flink is a part of the same ecosystem as Cloudera, and for batch processing it's actually very useful but for real-time processing there could be more development with regards to the big data capabilities amongst the various ecosystems out there."
"In terms of improvement, there should be better reporting. You can integrate with reporting solutions but Flink doesn't offer it themselves."
"Amazon's CloudFormation templates don't allow for direct deployment in the private subnet."
"The machine learning library is not very flexible."
"PyFlink is not as fully featured as Python itself, so there are some limitations to what you can do with it."
"Skill requirement is required. There is a learning curve."
 

Pricing and Cost Advice

"It's an open-source solution."
"It's an open source."
"The solution is open-source, which is free."
"Apache Flink is open source so we pay no licensing for the use of the software."
"This is an open-source platform that can be used free of charge."
Information not available
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
824,067 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
23%
Computer Software Company
17%
Manufacturing Company
6%
Healthcare Company
5%
Financial Services Firm
21%
Computer Software Company
16%
Manufacturing Company
15%
Educational Organization
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
There are more libraries that are missing and also maybe more capabilities for machine learning. It could have a friendly user interface for pipeline configuration, deployment, and monitoring.
What needs improvement with Informatica Data Engineering Streaming?
Skill requirement is required. There is a learning curve.
What is your primary use case for Informatica Data Engineering Streaming?
We implement business intelligence solutions, including data warehousing tools, data integration to load data into warehouses, and then creating reports.
What advice do you have for others considering Informatica Data Engineering Streaming?
Overall, I would rate the solution an eight out of ten. Usually, Informatica is for big clients because of its pricing, and it also requires some skill sets. It requires investment into a proper da...
 

Also Known As

Flink
Big Data Streaming, Informatica Intelligent Streaming, Intelligent Streaming
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Jewelry TV
Find out what your peers are saying about Databricks, Amazon Web Services (AWS), Confluent and others in Streaming Analytics. Updated: December 2024.
824,067 professionals have used our research since 2012.