Try our new research platform with insights from 80,000+ expert users

Apache Spark vs IBM Spectrum Computing comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark
Ranking in Hadoop
1st
Average Rating
8.4
Reviews Sentiment
6.9
Number of Reviews
68
Ranking in other categories
Compute Service (5th), Java Frameworks (2nd)
IBM Spectrum Computing
Ranking in Hadoop
6th
Average Rating
8.2
Reviews Sentiment
5.9
Number of Reviews
9
Ranking in other categories
Cloud Management (29th)
 

Mindshare comparison

As of February 2026, in the Hadoop category, the mindshare of Apache Spark is 13.4%, down from 18.4% compared to the previous year. The mindshare of IBM Spectrum Computing is 4.5%, up from 1.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Hadoop Market Share Distribution
ProductMarket Share (%)
Apache Spark13.4%
IBM Spectrum Computing4.5%
Other82.1%
Hadoop
 

Featured Reviews

Devindra Weerasooriya - PeerSpot reviewer
Data Architect at Devtech
Provides a consistent framework for building data integration and access solutions with reliable performance
The in-memory computation feature is certainly helpful for my processing tasks. It is helpful because while using structures that could be held in memory rather than stored during the period of computation, I go for the in-memory option, though there are limitations related to holding it in memory that need to be addressed, but I have a preference for in-memory computation. The solution is beneficial in that it provides a base-level long-held understanding of the framework that is not variant day by day, which is very helpful in my prototyping activity as an architect trying to assess Apache Spark, Great Expectations, and Vault-based solutions versus those proposed by clients like TIBCO or Informatica.
OmarIsmail1 - PeerSpot reviewer
Infrastructure Technical Specialist II at Clicks Group
Senior Technical Specialist appreciates intelligent workload management, strong support, and scalability
The best features of IBM Spectrum Computing are common across many of their storage products. The software is solid, meaning that the code is stable. They take business seriously, which is what IBM stands for - International Business Machines. They always maintain a business-oriented approach in their software development. It's not simply clicking through interfaces; in IBM software, they consider their actions, process flows, and workflows around business processes. It requires understanding IBM and their methodology, as the software operates accordingly. I have utilized IBM Spectrum Computing's intelligent workload management feature. We use Insights, which is connected to the cloud. This provides AI capabilities for analyzing the configuration, offering smart recommendations on new code, warning about bugs in current code, and suggesting configuration improvements through its advisor tool. The predictive analytics feature in IBM Spectrum Computing enables optimal software performance through Insights. However, being a storage administrator requires foundational knowledge and understanding beyond these tools. For troubleshooting, it's efficient in spotting bottlenecks, but understanding the terms and metrics is essential as it provides answers that need interpretation.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Apache Spark can do large volume interactive data analysis."
"Spark can handle small to huge data and is suitable for any size of company."
"Apache Spark, specifically PySpark and the tools available there, have been quite helpful in my event analysis work."
"The most crucial feature for us is the streaming capability. It serves as a fundamental aspect that allows us to exert control over our operations."
"I appreciate everything about the solution, not just one or two specific features. The solution is highly stable. I rate it a perfect ten. The solution is highly scalable. I rate it a perfect ten. The initial setup was straightforward. I recommend using the solution. Overall, I rate the solution a perfect ten."
"The product’s most valuable features are lazy evaluation and workload distribution."
"The distribution of tasks, like the seamless map-reduce functionality, is quite impressive."
"The deployment of the product is easy."
"Spectrum Computing's best features are its speed, robustness, and data processing and analysis."
"This solution is working for both VTL and tape."
"We are satisfied with the technical support, we have no issues."
"The best features of IBM Spectrum Computing are common across many of their storage products."
"I have utilized IBM Spectrum Computing's intelligent workload management feature through Insights, which is connected to the cloud."
"The comparison was challenging, but the IBM Spectrum Scale offered a balanced solution. Our engineers rated itsanalytics capabilities equally high as Pure Storage. For workload management, Spectrum Computing provided effective solutions that met our needs. Workload management is part of a complete solution that uses different tools. There were the cloud and HPC parts; within HPC, there were parts like liquid cooling, simple computing, storage, and orchestration. The orchestration team handled the workload management."
"IBM's ability to cluster compute resources is impressive, with built-in support for scenarios like VR and active-active configurations,"
"Easy to operate and use."
 

Cons

"We've had problems using a Python process to try to access something in a large volume of data. It crashes if somebody gives me the wrong code because it cannot handle a large volume of data."
"Apache Spark lacks geospatial data."
"When you want to extract data from your HDFS and other sources then it is kind of tricky because you have to connect with those sources."
"Apache Spark provides very good performance The tuning phase is still tricky."
"This solution currently cannot support or distribute neural network related models, or deep learning related algorithms. We would like this functionality to be developed."
"The solution must improve its performance."
"The graphical user interface (UI) could be a bit more clear. It's very hard to figure out the execution logs and understand how long it takes to send everything. If an execution is lost, it's not so easy to understand why or where it went. I have to manually drill down on the data processes which takes a lot of time. Maybe there could be like a metrics monitor, or maybe the whole log analysis could be improved to make it easier to understand and navigate."
"We use big data manager but we cannot use it as conditional data so whenever we're trying to fetch the data, it takes a bit of time."
"This solution is no longer managing tapes correctly."
"SMB storage and HPC is not compatible and it should be supported by IBM Spectrum Computing."
"The deduplication software isn't quite up to speed with the market."
"In Pakistan, IBM's disadvantage is the lack of OEM support and presence."
"We have not been able to use deduplication."
"The deduplication software isn't quite up to speed with the market. While IBM has excellent compression technology, specifically on their FlashCore modules, they lag behind competitors such as NetApp in deduplication capabilities."
"Lack of sufficient documentation, particularly in Spanish."
"We'd like to see some AI model training for machine learning."
 

Pricing and Cost Advice

"The tool is an open-source product. If you're using the open-source Apache Spark, no fees are involved at any time. Charges only come into play when using it with other services like Databricks."
"The product is expensive, considering the setup."
"Considering the product version used in my company, I feel that the tool is not costly since the product is available for free."
"Apache Spark is an open-source solution, and there is no cost involved in deploying the solution on-premises."
"It is quite expensive. In fact, it accounts for almost 50% of the cost of our entire project."
"Apache Spark is an open-source tool."
"Apache Spark is not too cheap. You have to pay for hardware and Cloudera licenses. Of course, there is a solution with open source without Cloudera."
"Apache Spark is an expensive solution."
"Spectrum Computing is one of the most expensive products on the market."
"This solution is expensive."
report
Use our free recommendation engine to learn which Hadoop solutions are best for your needs.
881,565 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
25%
Computer Software Company
8%
Manufacturing Company
7%
University
6%
Financial Services Firm
17%
Manufacturing Company
15%
Outsourcing Company
9%
Transportation Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business28
Midsize Enterprise15
Large Enterprise32
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise1
Large Enterprise6
 

Questions from the Community

What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Apache Spark is open-source, so it doesn't incur any charges.
What needs improvement with Apache Spark?
Areas for improvement are obviously ease of use considerations, though there are limitations in doing that, so while various tools like Informatica, TIBCO, or Talend offer specific aspects, licensi...
What is your experience regarding pricing and costs for IBM Spectrum Computing?
IBM Spectrum Computing consistently offers competitive pricing. When solutioning new implementations, IBM always presents the best solution and price. In a recent comparison with Pure Storage and N...
What needs improvement with IBM Spectrum Computing?
IBM Spectrum Computing had limitations with remote copy services between head office and disaster recovery sites. In the last year, IBM has improved the code by re-engineering it to policy-based re...
What is your primary use case for IBM Spectrum Computing?
The typical use case for IBM Spectrum Computing is that it's an all-rounder. It can be used in various scenarios, such as the retailer I work for that has batch processing. It's on-demand when perf...
 

Also Known As

No data available
IBM Platform Computing
 

Overview

 

Sample Customers

NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
London South Bank University, Transvalor, Infiniti Red Bull Racing, Genomic
Find out what your peers are saying about Apache Spark vs. IBM Spectrum Computing and other solutions. Updated: February 2026.
881,565 professionals have used our research since 2012.