Try our new research platform with insights from 80,000+ expert users

AWS Batch vs Apache Spark comparison

 

Comparison Buyer's Guide

Executive Summary
 

Categories and Ranking

Apache Spark
Ranking in Compute Service
4th
Average Rating
8.4
Reviews Sentiment
7.7
Number of Reviews
64
Ranking in other categories
Hadoop (1st), Java Frameworks (2nd)
AWS Batch
Ranking in Compute Service
6th
Average Rating
9.0
Number of Reviews
4
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of November 2024, in the Compute Service category, the mindshare of Apache Spark is 11.2%, up from 7.7% compared to the previous year. The mindshare of AWS Batch is 18.1%, down from 21.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Compute Service
 

Featured Reviews

SurjitChoudhury - PeerSpot reviewer
Offers batch processing of data and in-memory processing in Spark greatly enhances performance
Spark supports real-time data processing through Spark Streaming. It allows for batch processing of data. If you have immediate data, like chat information, that needs to be processed in real-time, Spark Streaming is used. For data that can be evaluated later, batch processing with Apache Spark is suitable. Mostly, batch processing is utilized in our organization, but for streaming data processing, tools like Kafka are often integrated. In-memory processing in Spark greatly enhances performance, making it a hundred times faster than the previous MapReduce methods. This improvement is achieved through optimization techniques like caching, broadcasting, and partitioning, which help in optimizing queries for faster processing.
Larry Singh - PeerSpot reviewer
User-friendly, good customization and offers exceptional scalability, allowing users to run jobs ranging from 32 cores to over 2,000 cores
The main drawback to using AWS Batch would be the cost. It will be more expensive in some cases than using an HPC. It's more amenable to cases where you have spot requirements. So, for instance, you don't exactly know how much compute resources you'll need and when you'll need them. So it's much better for that flexibility. But if you're going to be running jobs consistently and using the compute cluster consistently for a lot of time, and it's not going to have a lot of downtime, then the HPC system might be a better alternative. So, really, it boils down to cost versus usage trade-offs. It's going to be more expensive for a lot of people. In future releases, I would like to see anything that could help make it easier to set up your initial system. And besides improving the GUI a little bit, the interface to it, making it a little bit more descriptive and having more information at your fingertips, so if you could point to the help of what the different features are, you can get quick access to that. That might help. With most of the AWS services, the difficulty really is getting information and knowledge about the system and seeing examples. So, seeing examples of how it's being used under multiple use cases would be the best way to become familiar with it. And some of that would just come with experience. You have to just use it and play with it. But in terms of the system itself, it's not that difficult to set up or use.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"AI libraries are the most valuable. They provide extensibility and usability. Spark has a lot of connectors, which is a very important and useful feature for AI. You need to connect a lot of points for AI, and you have to get data from those systems. Connectors are very wide in Spark. With a Spark cluster, you can get fast results, especially for AI."
"The most valuable feature of Apache Spark is its flexibility."
"The features we find most valuable are the machine learning, data learning, and Spark Analytics."
"The most valuable feature of Apache Spark is its memory processing because it processes data over RAM rather than disk, which is much more efficient and fast."
"The deployment of the product is easy."
"The product's initial setup phase was easy."
"The distribution of tasks, like the seamless map-reduce functionality, is quite impressive."
"The solution is scalable."
"AWS Batch manages the execution of computing workload, including job scheduling, provisioning, and scaling."
"We can easily integrate AWS container images into the product."
"AWS Batch's deployment was easy."
"There is one other feature in confirmation or call confirmation where you can have templates of what you want to do and just modify those to customize it to your needs. And these templates basically make it a lot easier for you to get started."
 

Cons

"The logging for the observability platform could be better."
"We've had problems using a Python process to try to access something in a large volume of data. It crashes if somebody gives me the wrong code because it cannot handle a large volume of data."
"I would like to see integration with data science platforms to optimize the processing capability for these tasks."
"This solution currently cannot support or distribute neural network related models, or deep learning related algorithms. We would like this functionality to be developed."
"It would be beneficial to enhance Spark's capabilities by incorporating models that utilize features not traditionally present in its framework."
"More ML based algorithms should be added to it, to make it algorithmic-rich for developers."
"It's not easy to install."
"Apache Spark is very difficult to use. It would require a data engineer. It is not available for every engineer today because they need to understand the different concepts of Spark, which is very, very difficult and it is not easy to learn."
"When we run a lot of batch jobs, the UI must show the history."
"The solution should include better and seamless integration with other AWS services, like Amazon S3 data storage and EC2 compute resources."
"AWS Batch needs to improve its documentation."
"The main drawback to using AWS Batch would be the cost. It will be more expensive in some cases than using an HPC. It's more amenable to cases where you have spot requirements."
 

Pricing and Cost Advice

"The product is expensive, considering the setup."
"Licensing costs can vary. For instance, when purchasing a virtual machine, you're asked if you want to take advantage of the hybrid benefit or if you prefer the license costs to be included upfront by the cloud service provider, such as Azure. If you choose the hybrid benefit, it indicates you already possess a license for the operating system and wish to avoid additional charges for that specific VM in Azure. This approach allows for a reduction in licensing costs, charging only for the service and associated resources."
"Since we are using the Apache Spark version, not the data bricks version, it is an Apache license version, the support and resolution of the bug are actually late or delayed. The Apache license is free."
"It is an open-source platform. We do not pay for its subscription."
"Apache Spark is not too cheap. You have to pay for hardware and Cloudera licenses. Of course, there is a solution with open source without Cloudera."
"Apache Spark is open-source. You have to pay only when you use any bundled product, such as Cloudera."
"Spark is an open-source solution, so there are no licensing costs."
"On the cloud model can be expensive as it requires substantial resources for implementation, covering on-premises hardware, memory, and licensing."
"AWS Batch is a cheap solution."
"AWS Batch's pricing is good."
"The pricing is very fair."
report
Use our free recommendation engine to learn which Compute Service solutions are best for your needs.
816,406 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
27%
Computer Software Company
13%
Manufacturing Company
8%
University
5%
Financial Services Firm
27%
Computer Software Company
12%
Manufacturing Company
7%
University
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Compared to other solutions like Doc DB, Spark is more costly due to the need for extensive infrastructure. It requires significant investment in infrastructure, which can be expensive. While cloud...
What needs improvement with Apache Spark?
The main concern is the overhead of Java when distributed processing is not necessary. In such cases, operations can often be done on one node, making Spark's distributed mode unnecessary. Conseque...
Which is better, AWS Lambda or Batch?
AWS Lambda is a serverless solution. It doesn’t require any infrastructure, which allows for cost savings. There is no setup process to deal with, as the entire solution is in the cloud. If you use...
What do you like most about AWS Batch?
AWS Batch manages the execution of computing workload, including job scheduling, provisioning, and scaling.
 

Comparisons

 

Also Known As

No data available
Amazon Batch
 

Overview

 

Sample Customers

NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
Hess, Expedia, Kelloggs, Philips, HyperTrack
Find out what your peers are saying about AWS Batch vs. Apache Spark and other solutions. Updated: October 2024.
816,406 professionals have used our research since 2012.