Try our new research platform with insights from 80,000+ expert users

Apache Spark vs Spring Boot comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Jan 12, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark
Ranking in Java Frameworks
2nd
Average Rating
8.4
Reviews Sentiment
7.7
Number of Reviews
65
Ranking in other categories
Hadoop (1st), Compute Service (4th)
Spring Boot
Ranking in Java Frameworks
1st
Average Rating
8.4
Reviews Sentiment
7.5
Number of Reviews
38
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of April 2025, in the Java Frameworks category, the mindshare of Apache Spark is 5.5%, down from 7.5% compared to the previous year. The mindshare of Spring Boot is 41.6%, down from 43.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Java Frameworks
 

Q&A Highlights

MT
Aug 28, 2023
 

Featured Reviews

Ilya Afanasyev - PeerSpot reviewer
Reliable, able to expand, and handle large amounts of data well
We use batch processing. It works well with our formats and file versions. There's a lot of functionality. In our pipeline each hour, we make a copy of data from MongoDB, of the changes from MongoDB to some specific file. Each time pipeline copied all of the data, it would do it each time without changes to all of the tables. Tables have a lot of data, and in the last MongoDB version, there is a possibility to read only changed data. This reduced the cost and configuration of the cluster, and we saved about $150,000. The solution is scalable. It's a stable product.
RajuGottupalli - PeerSpot reviewer
Minimizes a lot of coding, improves the time to market, and is easily deployable and configurable
Spring Boot is a bounded framework. The services we develop are purely synchronous services, so there's a blocking and waiting state. This is a big problem in microservices. To avoid this problem, we have to make the service a reactive session. It has to be reactive to a particular load, particular condition, or based on the number of requests hitting the particular service. All these factors make the service a reactor. There's another module in which Spring Boot provides spring reflex. This module enables the reactiveness of the service, meaning that it eliminates the blocking and waiting state. For example, if you're sending a get operation or a post operation, there won't be any waiting for it to actually hit that particular network to get the data from another service. It continuously flows the request, and there is a zero waiting pack. Vert.x is another good framework where there are similar features or similar benefits with having a reactive session. Spring Boot is a license resource, so it's a framework where we can customize our solution or a particular requirement to build a good solution using Spring Boot. But it's an opinionated framework, meaning that it's completely bounded. You have only one direction to find a solution, whereas Vert.x is an unopinionated framework. Unopinionated is a kind of a toolkit where you can have more optimization and a more flexible solution, which is suitable to your requirements. In Spring Boot, the opportunities are limited. With Vert.x and other programming tools, we have multiple options to explore the solution in a different way and achieve a nonfunctional requirement of thousands transactions in a second. Spring Boot might not support this kind of non-functional requirement. Vert.X is a very good solution to solve critical NFRs for a particular application.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The product's initial setup phase was easy."
"AI libraries are the most valuable. They provide extensibility and usability. Spark has a lot of connectors, which is a very important and useful feature for AI. You need to connect a lot of points for AI, and you have to get data from those systems. Connectors are very wide in Spark. With a Spark cluster, you can get fast results, especially for AI."
"Spark can handle small to huge data and is suitable for any size of company."
"One of the key features is that Apache Spark is a distributed computing framework. You can help multiple slaves and distribute the workload between them."
"The solution is very stable."
"The distribution of tasks, like the seamless map-reduce functionality, is quite impressive."
"The deployment of the product is easy."
"The most valuable feature of Apache Spark is its ease of use."
"It's very easy to get started. It's very quick. Most of the configurations are already available. So not much time is spent on setting up things. One can quickly set up and then get rolling."
"The most valuable feature of Spring Boot is all the interactions to various applications happen using Spring Boot."
"The simplicity is excellent."
"Spring Boot's configuration is easy, and it has an out-of-the-box deployment."
"The API gateway and cloud configuration allows us to configure the properties outside of the service with respect to enrollment."
"It is a stable solution. Stability-wise, I rate the solution a nine out of ten...The initial setup was not complex and was a simple process."
"The solution's framework is stable."
"This is a stable solution that is being used in the HR space."
 

Cons

"Its UI can be better. Maintaining the history server is a little cumbersome, and it should be improved. I had issues while looking at the historical tags, which sometimes created problems. You have to separately create a history server and run it. Such things can be made easier. Instead of separately installing the history server, it can be made a part of the whole setup so that whenever you set it up, it becomes available."
"More ML based algorithms should be added to it, to make it algorithmic-rich for developers."
"Dynamic DataFrame options are not yet available."
"Needs to provide an internal schedule to schedule spark jobs with monitoring capability."
"Spark could be improved by adding support for other open-source storage layers than Delta Lake."
"When using Spark, users may need to write their own parallelization logic, which requires additional effort and expertise."
"Apache Spark could potentially improve in terms of user-friendliness, particularly for individuals with a SQL background. While it's suitable for those with programming knowledge, making it more accessible to those without extensive programming skills could be beneficial."
"The product could improve the user interface and make it easier for new users."
"The security could be simplified."
"Having to restart the application to reload properties."
"The cross framework compatibility has some shortcomings. With JUnit Test Runner and Spring Boot, it's really tedious to make them both work to write the test cases."
"The performance could be better."
"If you want to have multiple integrations, the setup phase will become complex."
"Spring Boot is okay right now, but my team is looking for some integration where you can make a call to the JMS messaging service and other types of third-party integrations. If the integration with Spring Boot is improved, that would make the tool better. What I'd like to see in the next release of Spring Boot is its integration or tie-up with messaging servers and third-party EFPs, as that would make it very good and more competitive versus other new solutions in the market."
"This solution could be improved if there were more libraries available. We would also like more mobile platform functionality using low levels of code."
"We'd like them to develop more supporting testing."
 

Pricing and Cost Advice

"Licensing costs can vary. For instance, when purchasing a virtual machine, you're asked if you want to take advantage of the hybrid benefit or if you prefer the license costs to be included upfront by the cloud service provider, such as Azure. If you choose the hybrid benefit, it indicates you already possess a license for the operating system and wish to avoid additional charges for that specific VM in Azure. This approach allows for a reduction in licensing costs, charging only for the service and associated resources."
"It is quite expensive. In fact, it accounts for almost 50% of the cost of our entire project."
"On the cloud model can be expensive as it requires substantial resources for implementation, covering on-premises hardware, memory, and licensing."
"We are using the free version of the solution."
"Spark is an open-source solution, so there are no licensing costs."
"Considering the product version used in my company, I feel that the tool is not costly since the product is available for free."
"Apache Spark is open-source. You have to pay only when you use any bundled product, such as Cloudera."
"It is an open-source platform. We do not pay for its subscription."
"It's open-source software, so it's free. It's a community license."
"It's an open-source solution."
"As Spring Boot is an open-source tool, it's free."
"Spring Boot is an open source solution, it is free to use."
"Spring Boot is free; even the Spring Tools Suite for Eclipse is free."
"This is an open source solution."
"Spring Boot is open source. It's a free tool and free framework."
"Spring Boot is an open-source solution."
report
Use our free recommendation engine to learn which Java Frameworks solutions are best for your needs.
845,040 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
28%
Computer Software Company
13%
Manufacturing Company
8%
Comms Service Provider
5%
Financial Services Firm
28%
Computer Software Company
14%
Government
7%
Manufacturing Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Compared to other solutions like Doc DB, Spark is more costly due to the need for extensive infrastructure. It requires significant investment in infrastructure, which can be expensive. While cloud...
What needs improvement with Apache Spark?
The Spark solution could improve in scheduling tasks and managing dependencies. Spark alone cannot handle sequential tasks, requiring environments like Airflow scheduler or scripts. For instance, o...
What do you like most about Spring Boot?
1. Open Source2. Excellent Community Support -- Widely used across different projects -- so your search for answers would be easy and almost certain.3. Extendable Stack with a wide array of availab...
Which is better - Spring Boot or Eclipse MicroProfile?
Springboot is a Java-based solution that is very popular and easy to use. You can use it to build applications quickly and confidently. Springboot has a very large, helpful learning community, whic...
Which is better - Spring Boot or Jakarta EE?
Our organization ran comparison tests to determine whether the Spring Boot or Jakarta EE application creation software was the better fit for us. We decided to go with Spring Boot. Spring Boot offe...
 

Comparisons

 

Overview

 

Sample Customers

NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
Information Not Available
Find out what your peers are saying about Apache Spark vs. Spring Boot and other solutions. Updated: March 2025.
845,040 professionals have used our research since 2012.