Try our new research platform with insights from 80,000+ expert users

Apache Spark vs Spring Boot comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Apr 20, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark
Ranking in Java Frameworks
2nd
Average Rating
8.4
Reviews Sentiment
7.7
Number of Reviews
65
Ranking in other categories
Hadoop (1st), Compute Service (4th)
Spring Boot
Ranking in Java Frameworks
1st
Average Rating
8.4
Reviews Sentiment
7.5
Number of Reviews
38
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of April 2025, in the Java Frameworks category, the mindshare of Apache Spark is 5.5%, down from 7.5% compared to the previous year. The mindshare of Spring Boot is 41.6%, down from 43.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Java Frameworks
 

Q&A Highlights

MT
Aug 28, 2023
 

Featured Reviews

Ilya Afanasyev - PeerSpot reviewer
Reliable, able to expand, and handle large amounts of data well
We use batch processing. It works well with our formats and file versions. There's a lot of functionality. In our pipeline each hour, we make a copy of data from MongoDB, of the changes from MongoDB to some specific file. Each time pipeline copied all of the data, it would do it each time without changes to all of the tables. Tables have a lot of data, and in the last MongoDB version, there is a possibility to read only changed data. This reduced the cost and configuration of the cluster, and we saved about $150,000. The solution is scalable. It's a stable product.
RajuGottupalli - PeerSpot reviewer
Minimizes a lot of coding, improves the time to market, and is easily deployable and configurable
Spring Boot is a bounded framework. The services we develop are purely synchronous services, so there's a blocking and waiting state. This is a big problem in microservices. To avoid this problem, we have to make the service a reactive session. It has to be reactive to a particular load, particular condition, or based on the number of requests hitting the particular service. All these factors make the service a reactor. There's another module in which Spring Boot provides spring reflex. This module enables the reactiveness of the service, meaning that it eliminates the blocking and waiting state. For example, if you're sending a get operation or a post operation, there won't be any waiting for it to actually hit that particular network to get the data from another service. It continuously flows the request, and there is a zero waiting pack. Vert.x is another good framework where there are similar features or similar benefits with having a reactive session. Spring Boot is a license resource, so it's a framework where we can customize our solution or a particular requirement to build a good solution using Spring Boot. But it's an opinionated framework, meaning that it's completely bounded. You have only one direction to find a solution, whereas Vert.x is an unopinionated framework. Unopinionated is a kind of a toolkit where you can have more optimization and a more flexible solution, which is suitable to your requirements. In Spring Boot, the opportunities are limited. With Vert.x and other programming tools, we have multiple options to explore the solution in a different way and achieve a nonfunctional requirement of thousands transactions in a second. Spring Boot might not support this kind of non-functional requirement. Vert.X is a very good solution to solve critical NFRs for a particular application.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"ETL and streaming capabilities."
"Its scalability and speed are very valuable. You can scale it a lot. It is a great technology for big data. It is definitely better than a lot of earlier warehouse or pipeline solutions, such as Informatica. Spark SQL is very compliant with normal SQL that we have been using over the years. This makes it easy to code in Spark. It is just like using normal SQL. You can use the APIs of Spark or you can directly write SQL code and run it. This is something that I feel is useful in Spark."
"Apache Spark is known for its ease of use. Compared to other available data processing frameworks, it is user-friendly."
"The product's deployment phase is easy."
"I appreciate everything about the solution, not just one or two specific features. The solution is highly stable. I rate it a perfect ten. The solution is highly scalable. I rate it a perfect ten. The initial setup was straightforward. I recommend using the solution. Overall, I rate the solution a perfect ten."
"One of Apache Spark's most valuable features is that it supports in-memory processing, the execution of jobs compared to traditional tools is very fast."
"The features we find most valuable are the machine learning, data learning, and Spark Analytics."
"AI libraries are the most valuable. They provide extensibility and usability. Spark has a lot of connectors, which is a very important and useful feature for AI. You need to connect a lot of points for AI, and you have to get data from those systems. Connectors are very wide in Spark. With a Spark cluster, you can get fast results, especially for AI."
"Spring Boot facilitates the use of Java which is open source. We use Github and other libraries that are available which assist in the building we need to do."
"Spring Boot could improve its integration with the major cloud providers. Connectivity with cloud solutions isn't easy compared to other frameworks like Django and Python."
"Spring Boot provides an all-in-one solution for the libraries needed to create a Win app. It covers all the aspects, including validation, security, etc. It provides all those features out-of-the-box. You can do almost everything with Spring Boot."
"The configuration setup in Spring Boot is pretty simplified compared to Hibernate ORM."
"It's easy to set up the solution."
"The Spring Cloud Gateway, Load Balancer are the valuable features. Apart from them, handling a sync call, then multiple service communication through field clients are also useful features."
"We like that the product is open-source."
"It's very easy to get started. It's very quick. Most of the configurations are already available. So not much time is spent on setting up things. One can quickly set up and then get rolling."
 

Cons

"The solution must improve its performance."
"It needs a new interface and a better way to get some data. In terms of writing our scripts, some processes could be faster."
"Apache Spark can improve the use case scenarios from the website. There is not any information on how you can use the solution across the relational databases toward multiple databases."
"They could improve the issues related to programming language for the platform."
"Stream processing needs to be developed more in Spark. I have used Flink previously. Flink is better than Spark at stream processing."
"Dynamic DataFrame options are not yet available."
"Its UI can be better. Maintaining the history server is a little cumbersome, and it should be improved. I had issues while looking at the historical tags, which sometimes created problems. You have to separately create a history server and run it. Such things can be made easier. Instead of separately installing the history server, it can be made a part of the whole setup so that whenever you set it up, it becomes available."
"It's not easy to install."
"When the dependencies within those starter packages clash, mismatch or have a hazard, it is hard to solve the issue."
"We have specific algorithms for our Load Balancer or API gateway. So those things, if they could make it more precise, that would be beneficial. Sometimes when we are under pressure or any new person who looks into that stuff, we'll get confused or scared because of some difficulties in understanding Which algorithm needs to be used to implement a Load Balancer. When when we Yeah. Because when we say circuit breaker, we need to use it, and then the user gets a blank circuit breaker. This means we are saying the circuit breaker needs to be moved, and then that circuit breaker needs to be elaborated more. What type of algorithm should I do, and what exactly do I need to get done so that this circuit breaker can help me to resolve my issue? Because, you know, because if you go for the circuit breaker, it will ask to open the new tab, you know, since it will check. If the service is not responding, it will wait and go for another connection. So in similar words, if they can explain it a bit more, that will be helpful. Everyone could do their own Google stuff, and they will get it, but they need help understanding how this could help them to resolve the issue. It will be good if Spring Boot provides information about real-time use cases."
"They should include tutorial videos for learning new features."
"This solution could be improved if it offered greater integration and was more compatible with other solutions."
"The tool's documentation could be improved, especially by tying it back to frequently asked questions and issues users have. A feedback loop in which the documentation targets the most commonly asked user questions would make using the solution easier. Essentially, I want a more user-centered approach to documentation rather than a purely technical focus."
"Perhaps an even lighter-weight, leaner version could be made available, to compete with alternative solutions, such as NodeJS."
"I would like to see more integration in this solution."
"If you want to create large microservices applications, you need to connect several applications and services to each other. It is very complicated, and Spring Boot does not have an integrated solution for it."
 

Pricing and Cost Advice

"Spark is an open-source solution, so there are no licensing costs."
"Considering the product version used in my company, I feel that the tool is not costly since the product is available for free."
"On the cloud model can be expensive as it requires substantial resources for implementation, covering on-premises hardware, memory, and licensing."
"It is an open-source platform. We do not pay for its subscription."
"The tool is an open-source product. If you're using the open-source Apache Spark, no fees are involved at any time. Charges only come into play when using it with other services like Databricks."
"Licensing costs can vary. For instance, when purchasing a virtual machine, you're asked if you want to take advantage of the hybrid benefit or if you prefer the license costs to be included upfront by the cloud service provider, such as Azure. If you choose the hybrid benefit, it indicates you already possess a license for the operating system and wish to avoid additional charges for that specific VM in Azure. This approach allows for a reduction in licensing costs, charging only for the service and associated resources."
"I did not pay anything when using the tool on cloud services, but I had to pay on the compute side. The tool is not expensive compared with the benefits it offers. I rate the price as an eight out of ten."
"Apache Spark is an expensive solution."
"The solution is free."
"This is an open source solution."
"This solution is free unless you apply for support."
"Spring Boot is an open source solution, it is free to use."
"If you want support there is paid enterprise version with support available."
"This is an open-source product."
"The solution is an open-source tool."
"As Spring Boot is an open-source tool, it's free."
report
Use our free recommendation engine to learn which Java Frameworks solutions are best for your needs.
848,716 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
27%
Computer Software Company
13%
Manufacturing Company
8%
Comms Service Provider
6%
Financial Services Firm
28%
Computer Software Company
13%
Government
7%
Manufacturing Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Compared to other solutions like Doc DB, Spark is more costly due to the need for extensive infrastructure. It requires significant investment in infrastructure, which can be expensive. While cloud...
What needs improvement with Apache Spark?
The Spark solution could improve in scheduling tasks and managing dependencies. Spark alone cannot handle sequential tasks, requiring environments like Airflow scheduler or scripts. For instance, o...
What do you like most about Spring Boot?
1. Open Source2. Excellent Community Support -- Widely used across different projects -- so your search for answers would be easy and almost certain.3. Extendable Stack with a wide array of availab...
Which is better - Spring Boot or Eclipse MicroProfile?
Springboot is a Java-based solution that is very popular and easy to use. You can use it to build applications quickly and confidently. Springboot has a very large, helpful learning community, whic...
Which is better - Spring Boot or Jakarta EE?
Our organization ran comparison tests to determine whether the Spring Boot or Jakarta EE application creation software was the better fit for us. We decided to go with Spring Boot. Spring Boot offe...
 

Comparisons

 

Overview

 

Sample Customers

NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
Information Not Available
Find out what your peers are saying about Apache Spark vs. Spring Boot and other solutions. Updated: April 2025.
848,716 professionals have used our research since 2012.