Try our new research platform with insights from 80,000+ expert users

Apache Spark vs Spring Boot comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Apr 20, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark
Ranking in Java Frameworks
2nd
Average Rating
8.4
Reviews Sentiment
7.7
Number of Reviews
66
Ranking in other categories
Hadoop (1st), Compute Service (5th)
Spring Boot
Ranking in Java Frameworks
1st
Average Rating
8.4
Reviews Sentiment
7.5
Number of Reviews
38
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of May 2025, in the Java Frameworks category, the mindshare of Apache Spark is 5.6%, down from 7.4% compared to the previous year. The mindshare of Spring Boot is 41.4%, down from 43.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Java Frameworks
 

Q&A Highlights

MT
Aug 28, 2023
 

Featured Reviews

Ilya Afanasyev - PeerSpot reviewer
Reliable, able to expand, and handle large amounts of data well
We use batch processing. It works well with our formats and file versions. There's a lot of functionality. In our pipeline each hour, we make a copy of data from MongoDB, of the changes from MongoDB to some specific file. Each time pipeline copied all of the data, it would do it each time without changes to all of the tables. Tables have a lot of data, and in the last MongoDB version, there is a possibility to read only changed data. This reduced the cost and configuration of the cluster, and we saved about $150,000. The solution is scalable. It's a stable product.
RajuGottupalli - PeerSpot reviewer
Minimizes a lot of coding, improves the time to market, and is easily deployable and configurable
Spring Boot is a bounded framework. The services we develop are purely synchronous services, so there's a blocking and waiting state. This is a big problem in microservices. To avoid this problem, we have to make the service a reactive session. It has to be reactive to a particular load, particular condition, or based on the number of requests hitting the particular service. All these factors make the service a reactor. There's another module in which Spring Boot provides spring reflex. This module enables the reactiveness of the service, meaning that it eliminates the blocking and waiting state. For example, if you're sending a get operation or a post operation, there won't be any waiting for it to actually hit that particular network to get the data from another service. It continuously flows the request, and there is a zero waiting pack. Vert.x is another good framework where there are similar features or similar benefits with having a reactive session. Spring Boot is a license resource, so it's a framework where we can customize our solution or a particular requirement to build a good solution using Spring Boot. But it's an opinionated framework, meaning that it's completely bounded. You have only one direction to find a solution, whereas Vert.x is an unopinionated framework. Unopinionated is a kind of a toolkit where you can have more optimization and a more flexible solution, which is suitable to your requirements. In Spring Boot, the opportunities are limited. With Vert.x and other programming tools, we have multiple options to explore the solution in a different way and achieve a nonfunctional requirement of thousands transactions in a second. Spring Boot might not support this kind of non-functional requirement. Vert.X is a very good solution to solve critical NFRs for a particular application.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most crucial feature for us is the streaming capability. It serves as a fundamental aspect that allows us to exert control over our operations."
"The processing time is very much improved over the data warehouse solution that we were using."
"Apache Spark can do large volume interactive data analysis."
"I like that it can handle multiple tasks parallelly. I also like the automation feature. JavaScript also helps with the parallel streaming of the library."
"It is highly scalable, allowing you to efficiently work with extensive datasets that might be problematic to handle using traditional tools that are memory-constrained."
"I feel the streaming is its best feature."
"The solution has been very stable."
"The main feature that we find valuable is that it is very fast."
"It is stable."
"We like that the product is open-source."
"It's very easy to get started. It's very quick. Most of the configurations are already available. So not much time is spent on setting up things. One can quickly set up and then get rolling."
"Spring Boot provides an all-in-one solution for the libraries needed to create a Win app. It covers all the aspects, including validation, security, etc. It provides all those features out-of-the-box. You can do almost everything with Spring Boot."
"The solution's framework is stable."
"The setup is straightforward."
"Spring Boot's configuration is easy, and it has an out-of-the-box deployment."
"We like that it is an open-source tool."
 

Cons

"Stability in terms of API (things were difficult, when transitioning from RDD to DataFrames, then to DataSet)."
"More ML based algorithms should be added to it, to make it algorithmic-rich for developers."
"The product could improve the user interface and make it easier for new users."
"Apache Spark can improve the use case scenarios from the website. There is not any information on how you can use the solution across the relational databases toward multiple databases."
"Apart from the restrictions that come with its in-memory implementation. It has been improved significantly up to version 3.0, which is currently in use."
"Apache Spark's GUI and scalability could be improved."
"When using Spark, users may need to write their own parallelization logic, which requires additional effort and expertise."
"The graphical user interface (UI) could be a bit more clear. It's very hard to figure out the execution logs and understand how long it takes to send everything. If an execution is lost, it's not so easy to understand why or where it went. I have to manually drill down on the data processes which takes a lot of time. Maybe there could be like a metrics monitor, or maybe the whole log analysis could be improved to make it easier to understand and navigate."
"The services we develop are purely synchronous services, so there's a blocking and waiting state. This is a big problem in microservices."
"They should include tutorial videos for learning new features."
"We have specific algorithms for our Load Balancer or API gateway. So those things, if they could make it more precise, that would be beneficial. Sometimes when we are under pressure or any new person who looks into that stuff, we'll get confused or scared because of some difficulties in understanding Which algorithm needs to be used to implement a Load Balancer. When when we Yeah. Because when we say circuit breaker, we need to use it, and then the user gets a blank circuit breaker. This means we are saying the circuit breaker needs to be moved, and then that circuit breaker needs to be elaborated more. What type of algorithm should I do, and what exactly do I need to get done so that this circuit breaker can help me to resolve my issue? Because, you know, because if you go for the circuit breaker, it will ask to open the new tab, you know, since it will check. If the service is not responding, it will wait and go for another connection. So in similar words, if they can explain it a bit more, that will be helpful. Everyone could do their own Google stuff, and they will get it, but they need help understanding how this could help them to resolve the issue. It will be good if Spring Boot provides information about real-time use cases."
"Spring Boot's cost could be cheaper."
"This solution could be improved if it offered greater integration and was more compatible with other solutions."
"Spring Boot could improve the interface, error handling, and integration performance."
"It's difficult to explain to junior developers what it does under the hood."
"This is a really good solution for me and I can't think of anything that can be improved."
 

Pricing and Cost Advice

"They provide an open-source license for the on-premise version."
"Apache Spark is an open-source tool."
"Since we are using the Apache Spark version, not the data bricks version, it is an Apache license version, the support and resolution of the bug are actually late or delayed. The Apache license is free."
"The tool is an open-source product. If you're using the open-source Apache Spark, no fees are involved at any time. Charges only come into play when using it with other services like Databricks."
"We are using the free version of the solution."
"On the cloud model can be expensive as it requires substantial resources for implementation, covering on-premises hardware, memory, and licensing."
"Licensing costs can vary. For instance, when purchasing a virtual machine, you're asked if you want to take advantage of the hybrid benefit or if you prefer the license costs to be included upfront by the cloud service provider, such as Azure. If you choose the hybrid benefit, it indicates you already possess a license for the operating system and wish to avoid additional charges for that specific VM in Azure. This approach allows for a reduction in licensing costs, charging only for the service and associated resources."
"Apache Spark is open-source. You have to pay only when you use any bundled product, such as Cloudera."
"Spring Boot is open source."
"This is an open-source product."
"Spring Boot is free; even the Spring Tools Suite for Eclipse is free."
"Spring Boot is an open source solution, it is free to use."
"Spring Boot is an open-source solution."
"As Spring Boot is an open-source tool, it's free."
"I use the free version of Spring Boot."
"This is an open source solution."
report
Use our free recommendation engine to learn which Java Frameworks solutions are best for your needs.
850,671 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
27%
Computer Software Company
13%
Manufacturing Company
8%
Comms Service Provider
6%
Financial Services Firm
28%
Computer Software Company
13%
Manufacturing Company
7%
Government
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Compared to other solutions like Doc DB, Spark is more costly due to the need for extensive infrastructure. It requires significant investment in infrastructure, which can be expensive. While cloud...
What needs improvement with Apache Spark?
The Spark solution could improve in scheduling tasks and managing dependencies. Spark alone cannot handle sequential tasks, requiring environments like Airflow scheduler or scripts. For instance, o...
What do you like most about Spring Boot?
1. Open Source2. Excellent Community Support -- Widely used across different projects -- so your search for answers would be easy and almost certain.3. Extendable Stack with a wide array of availab...
Which is better - Spring Boot or Eclipse MicroProfile?
Springboot is a Java-based solution that is very popular and easy to use. You can use it to build applications quickly and confidently. Springboot has a very large, helpful learning community, whic...
Which is better - Spring Boot or Jakarta EE?
Our organization ran comparison tests to determine whether the Spring Boot or Jakarta EE application creation software was the better fit for us. We decided to go with Spring Boot. Spring Boot offe...
 

Comparisons

 

Overview

 

Sample Customers

NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
Information Not Available
Find out what your peers are saying about Apache Spark vs. Spring Boot and other solutions. Updated: April 2025.
850,671 professionals have used our research since 2012.