Try our new research platform with insights from 80,000+ expert users

Apache Spark vs Spring Boot comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Apr 20, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark
Ranking in Java Frameworks
2nd
Average Rating
8.4
Reviews Sentiment
7.7
Number of Reviews
66
Ranking in other categories
Hadoop (1st), Compute Service (4th)
Spring Boot
Ranking in Java Frameworks
1st
Average Rating
8.4
Reviews Sentiment
7.5
Number of Reviews
38
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of April 2025, in the Java Frameworks category, the mindshare of Apache Spark is 5.5%, down from 7.5% compared to the previous year. The mindshare of Spring Boot is 41.6%, down from 43.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Java Frameworks
 

Q&A Highlights

MT
Aug 28, 2023
 

Featured Reviews

Ilya Afanasyev - PeerSpot reviewer
Reliable, able to expand, and handle large amounts of data well
We use batch processing. It works well with our formats and file versions. There's a lot of functionality. In our pipeline each hour, we make a copy of data from MongoDB, of the changes from MongoDB to some specific file. Each time pipeline copied all of the data, it would do it each time without changes to all of the tables. Tables have a lot of data, and in the last MongoDB version, there is a possibility to read only changed data. This reduced the cost and configuration of the cluster, and we saved about $150,000. The solution is scalable. It's a stable product.
RajuGottupalli - PeerSpot reviewer
Minimizes a lot of coding, improves the time to market, and is easily deployable and configurable
Spring Boot is a bounded framework. The services we develop are purely synchronous services, so there's a blocking and waiting state. This is a big problem in microservices. To avoid this problem, we have to make the service a reactive session. It has to be reactive to a particular load, particular condition, or based on the number of requests hitting the particular service. All these factors make the service a reactor. There's another module in which Spring Boot provides spring reflex. This module enables the reactiveness of the service, meaning that it eliminates the blocking and waiting state. For example, if you're sending a get operation or a post operation, there won't be any waiting for it to actually hit that particular network to get the data from another service. It continuously flows the request, and there is a zero waiting pack. Vert.x is another good framework where there are similar features or similar benefits with having a reactive session. Spring Boot is a license resource, so it's a framework where we can customize our solution or a particular requirement to build a good solution using Spring Boot. But it's an opinionated framework, meaning that it's completely bounded. You have only one direction to find a solution, whereas Vert.x is an unopinionated framework. Unopinionated is a kind of a toolkit where you can have more optimization and a more flexible solution, which is suitable to your requirements. In Spring Boot, the opportunities are limited. With Vert.x and other programming tools, we have multiple options to explore the solution in a different way and achieve a nonfunctional requirement of thousands transactions in a second. Spring Boot might not support this kind of non-functional requirement. Vert.X is a very good solution to solve critical NFRs for a particular application.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It is useful for handling large amounts of data. It is very useful for scientific purposes."
"Spark can handle small to huge data and is suitable for any size of company."
"DataFrame: Spark SQL gives the leverage to create applications more easily and with less coding effort."
"The most crucial feature for us is the streaming capability. It serves as a fundamental aspect that allows us to exert control over our operations."
"The tool's most valuable feature is its speed and efficiency. It's much faster than other tools and excels in parallel data processing. Unlike tools like Python or JavaScript, which may struggle with parallel processing, it allows us to handle large volumes of data with more power easily."
"Provides a lot of good documentation compared to other solutions."
"The distribution of tasks, like the seamless map-reduce functionality, is quite impressive."
"With Spark, we parallelize our operations, efficiently accessing both historical and real-time data."
"It is a very scalable solution."
"Spring Boot's main feature is that it's great for DevOps because you can write your own application. You don't need to install Apache Tomcat. You can create your project easily with a few clicks."
"Spring Boot facilitates the use of Java which is open source. We use Github and other libraries that are available which assist in the building we need to do."
"This is a pretty light solution. It's not too heavy."
"The most valuable feature of Spring Boot is the microservices and change information. Additionally, there are plenty of features."
"The most valuable feature of Spring Boot is it reduces the configuration needed. The configuration is handled by the solution. For example, if you're going to develop a web service, we needed to have a Tomcat web server and had to deploy the services and do tests. However, with Spring Boot, the default server comes with Spring Boot which reduces the task of doing all the configuration."
"The Spring Cloud Gateway, Load Balancer are the valuable features. Apart from them, handling a sync call, then multiple service communication through field clients are also useful features."
"Spring Boot's most valuable functionalities include inversion of control, dependency injection, and the ability to gather all services, models, and controllers together for easy connectivity to your REST API, as well as the ability to build a modular response and request system. It seamlessly integrates with various backends, such as SQL, events, and messaging systems, making it a user-friendly and efficient Java tool. Additionally, it functions as a reliable business transaction layer, providing excellent support for front-end and back-end visual tools."
 

Cons

"Apache Spark can improve the use case scenarios from the website. There is not any information on how you can use the solution across the relational databases toward multiple databases."
"There were some problems related to the product's compatibility with a few Python libraries."
"The management tools could use improvement. Some of the debugging tools need some work as well. They need to be more descriptive."
"There could be enhancements in optimization techniques, as there are some limitations in this area that could be addressed to further refine Spark's performance."
"This solution currently cannot support or distribute neural network related models, or deep learning related algorithms. We would like this functionality to be developed."
"Needs to provide an internal schedule to schedule spark jobs with monitoring capability."
"At times during the deployment process, the tool goes down, making it look less robust. To take care of the issues in the deployment process, users need to do manual interventions occasionally."
"More ML based algorithms should be added to it, to make it algorithmic-rich for developers."
"Spring Boot's cost could be cheaper."
"The cloud packaging is not very straightforward."
"The current state of Spring Boot's cloud layer requires further development, especially for collecting Java functions for cloud platforms like GCP Cloudground. Having to write every single API request in a single class can be a cumbersome and time-consuming task that is not ideal for Java developers. Additionally, having all API calls in one class and making it the main class presents problems with package visibility. Therefore, there is much room for improvement in the Spring Cloud area."
"If you want to have multiple integrations, the setup phase will become complex."
"We have specific algorithms for our Load Balancer or API gateway. So those things, if they could make it more precise, that would be beneficial. Sometimes when we are under pressure or any new person who looks into that stuff, we'll get confused or scared because of some difficulties in understanding Which algorithm needs to be used to implement a Load Balancer. When when we Yeah. Because when we say circuit breaker, we need to use it, and then the user gets a blank circuit breaker. This means we are saying the circuit breaker needs to be moved, and then that circuit breaker needs to be elaborated more. What type of algorithm should I do, and what exactly do I need to get done so that this circuit breaker can help me to resolve my issue? Because, you know, because if you go for the circuit breaker, it will ask to open the new tab, you know, since it will check. If the service is not responding, it will wait and go for another connection. So in similar words, if they can explain it a bit more, that will be helpful. Everyone could do their own Google stuff, and they will get it, but they need help understanding how this could help them to resolve the issue. It will be good if Spring Boot provides information about real-time use cases."
"If you want to create large microservices applications, you need to connect several applications and services to each other. It is very complicated, and Spring Boot does not have an integrated solution for it."
"Perhaps an even lighter-weight, leaner version could be made available, to compete with alternative solutions, such as NodeJS."
"They should integrate the solution with more AI and machine learning platforms."
 

Pricing and Cost Advice

"They provide an open-source license for the on-premise version."
"Apache Spark is open-source. You have to pay only when you use any bundled product, such as Cloudera."
"Spark is an open-source solution, so there are no licensing costs."
"Since we are using the Apache Spark version, not the data bricks version, it is an Apache license version, the support and resolution of the bug are actually late or delayed. The Apache license is free."
"Apache Spark is an open-source solution, and there is no cost involved in deploying the solution on-premises."
"Considering the product version used in my company, I feel that the tool is not costly since the product is available for free."
"Licensing costs can vary. For instance, when purchasing a virtual machine, you're asked if you want to take advantage of the hybrid benefit or if you prefer the license costs to be included upfront by the cloud service provider, such as Azure. If you choose the hybrid benefit, it indicates you already possess a license for the operating system and wish to avoid additional charges for that specific VM in Azure. This approach allows for a reduction in licensing costs, charging only for the service and associated resources."
"We are using the free version of the solution."
"Spring Boot is an open source solution, it is free to use."
"Spring Boot is an open-source solution."
"This solution is free unless you apply for support."
"The solution is free."
"I am using a free version of Spring Boot."
"If you want support there is paid enterprise version with support available."
"I use the free version of Spring Boot."
"The solution is an open-source tool."
report
Use our free recommendation engine to learn which Java Frameworks solutions are best for your needs.
849,190 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
27%
Computer Software Company
13%
Manufacturing Company
8%
Comms Service Provider
6%
Financial Services Firm
28%
Computer Software Company
13%
Government
7%
Manufacturing Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Compared to other solutions like Doc DB, Spark is more costly due to the need for extensive infrastructure. It requires significant investment in infrastructure, which can be expensive. While cloud...
What needs improvement with Apache Spark?
The Spark solution could improve in scheduling tasks and managing dependencies. Spark alone cannot handle sequential tasks, requiring environments like Airflow scheduler or scripts. For instance, o...
What do you like most about Spring Boot?
1. Open Source2. Excellent Community Support -- Widely used across different projects -- so your search for answers would be easy and almost certain.3. Extendable Stack with a wide array of availab...
Which is better - Spring Boot or Eclipse MicroProfile?
Springboot is a Java-based solution that is very popular and easy to use. You can use it to build applications quickly and confidently. Springboot has a very large, helpful learning community, whic...
Which is better - Spring Boot or Jakarta EE?
Our organization ran comparison tests to determine whether the Spring Boot or Jakarta EE application creation software was the better fit for us. We decided to go with Spring Boot. Spring Boot offe...
 

Comparisons

 

Overview

 

Sample Customers

NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
Information Not Available
Find out what your peers are saying about Apache Spark vs. Spring Boot and other solutions. Updated: April 2025.
849,190 professionals have used our research since 2012.