Try our new research platform with insights from 80,000+ expert users

AWS Lambda vs Apache Spark comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark
Ranking in Compute Service
5th
Average Rating
8.4
Reviews Sentiment
7.7
Number of Reviews
66
Ranking in other categories
Hadoop (1st), Java Frameworks (2nd)
AWS Lambda
Ranking in Compute Service
1st
Average Rating
8.6
Reviews Sentiment
7.5
Number of Reviews
88
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of May 2025, in the Compute Service category, the mindshare of Apache Spark is 11.3%, up from 10.2% compared to the previous year. The mindshare of AWS Lambda is 21.3%, up from 21.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Compute Service
 

Featured Reviews

Ilya Afanasyev - PeerSpot reviewer
Reliable, able to expand, and handle large amounts of data well
We use batch processing. It works well with our formats and file versions. There's a lot of functionality. In our pipeline each hour, we make a copy of data from MongoDB, of the changes from MongoDB to some specific file. Each time pipeline copied all of the data, it would do it each time without changes to all of the tables. Tables have a lot of data, and in the last MongoDB version, there is a possibility to read only changed data. This reduced the cost and configuration of the cluster, and we saved about $150,000. The solution is scalable. It's a stable product.
Wai L Lin O - PeerSpot reviewer
A serverless solution with easy integration features
We use AWS Lambda because it provides a solution for our needs without requiring us to manage our infrastructure. With the tool, we only pay for the resources we use. Additionally, it is straightforward to implement and integrates with other services like API Gateway. The tool's serverless nature has had the most significant impact on our workflow. I find it particularly attractive because it eliminates the need for managing servers. In my previous experience, managing upgrades and updates was quite challenging. The solution's integration process with other AWS services was relatively easy. We primarily use AWS services such as EventBridge for scheduling processes and log management.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The tool's most valuable feature is its speed and efficiency. It's much faster than other tools and excels in parallel data processing. Unlike tools like Python or JavaScript, which may struggle with parallel processing, it allows us to handle large volumes of data with more power easily."
"I found the solution stable. We haven't had any problems with it."
"The product is useful for analytics."
"The solution is scalable."
"The most valuable feature is the Fault Tolerance and easy binding with other processes like Machine Learning, graph analytics."
"I appreciate everything about the solution, not just one or two specific features. The solution is highly stable. I rate it a perfect ten. The solution is highly scalable. I rate it a perfect ten. The initial setup was straightforward. I recommend using the solution. Overall, I rate the solution a perfect ten."
"Its scalability and speed are very valuable. You can scale it a lot. It is a great technology for big data. It is definitely better than a lot of earlier warehouse or pipeline solutions, such as Informatica. Spark SQL is very compliant with normal SQL that we have been using over the years. This makes it easy to code in Spark. It is just like using normal SQL. You can use the APIs of Spark or you can directly write SQL code and run it. This is something that I feel is useful in Spark."
"The fault tolerant feature is provided."
"The main features of this solution are the ability to integrate multiple AWS applications or external applications very quickly and organize all of them. Additionally, it is easy to use and you can run various programming languages, such as Python, Go, and Java."
"Thanks to this solution, we do not need to worry about hardware or resource utilization. It saves us time."
"It is my preferred product, as it provides me with source code within the solution."
"AWS Lambda's best features are log analysis and event triggering and actioning."
"AWS Lambda is cost-effective, providing noticeable cost savings."
"We are building a Twitter-like application in the boot camp. I have used Lamda for the integration of the post-confirmation page in the application. This will help you get your one-time password via mail. You can log in with the help of a post-confirmation page. We didn’t want to setup an instance specifically for confirmation. We used the Lambda function so that it goes back to sleep after pushing up."
"The ease and speed of developing the services using any available language is the most valuable feature."
"The programming language and the integration with other AWS services are the most valuable features."
 

Cons

"Include more machine learning algorithms and the ability to handle streaming of data versus micro batch processing."
"It's not easy to install."
"It would be beneficial to enhance Spark's capabilities by incorporating models that utilize features not traditionally present in its framework."
"The solution’s integration with other platforms should be improved."
"In data analysis, you need to take real-time data from different data sources. You need to process this in a subsecond, do the transformation in a subsecond, and all that."
"When using Spark, users may need to write their own parallelization logic, which requires additional effort and expertise."
"I know there is always discussion about which language to write applications in and some people do love Scala. However, I don't like it."
"The Spark solution could improve in scheduling tasks and managing dependencies."
"The deployment process is a bit complex, so it could be simplified to make it easier for beginners to deploy."
"The 60 seconds limitation with the consumption of the service is really restrictive for a service and the solution can be improved by eliminating that."
"AWS Lambda's GUI could be improved with a twist or tweak in its look and feel to make it more impressive."
"I have seen some drawbacks with certain integrations."
"We need to invest time in learning the tool's language variant. We have encountered instances of downtime as well."
"Security needs to be improved."
"The setup was pretty complex because there were many steps. For me, it was complex because I was somewhat new at it. It could be easier for someone who has done it a bunch of times. I just found that it was a very dense user experience. There's a lot going on during setup."
"Lambda's dashboard could be more user-friendly and customizable. I want the dashboard to have more information to quickly identify what functions and events are running. Also, we want to be able to add more trigger points, push notifications, and events."
 

Pricing and Cost Advice

"The tool is an open-source product. If you're using the open-source Apache Spark, no fees are involved at any time. Charges only come into play when using it with other services like Databricks."
"Since we are using the Apache Spark version, not the data bricks version, it is an Apache license version, the support and resolution of the bug are actually late or delayed. The Apache license is free."
"They provide an open-source license for the on-premise version."
"On the cloud model can be expensive as it requires substantial resources for implementation, covering on-premises hardware, memory, and licensing."
"The solution is affordable and there are no additional licensing costs."
"Considering the product version used in my company, I feel that the tool is not costly since the product is available for free."
"Licensing costs can vary. For instance, when purchasing a virtual machine, you're asked if you want to take advantage of the hybrid benefit or if you prefer the license costs to be included upfront by the cloud service provider, such as Azure. If you choose the hybrid benefit, it indicates you already possess a license for the operating system and wish to avoid additional charges for that specific VM in Azure. This approach allows for a reduction in licensing costs, charging only for the service and associated resources."
"Apache Spark is open-source. You have to pay only when you use any bundled product, such as Cloudera."
"AWS Lambda is a cheap solution."
"The fees are volume-based."
"We only need to pay for the compute time our code consumes."
"AWS Lambda is a very inexpensive solution. They charge for the number of times we run it. If you run AWS Lambda for one time, they charge around 50 cents or 25 cents for the use. I don't know the exact price, but it's less than a dollar."
"For licensing, we pay a yearly subscription."
"AWS Lambda is not expensive for micro testing but is expensive if used for long deployment or long services."
"Lambda is an affordable solution. They offer free requests every month and charge per the compute time. If you are working in a big organization, usually AWS offer a savings plan where you get approximately 70% discount on pricing."
"AWS is slightly more expensive than Azure."
report
Use our free recommendation engine to learn which Compute Service solutions are best for your needs.
850,671 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
27%
Computer Software Company
13%
Manufacturing Company
8%
Comms Service Provider
6%
Educational Organization
67%
Financial Services Firm
8%
Computer Software Company
5%
Manufacturing Company
3%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Compared to other solutions like Doc DB, Spark is more costly due to the need for extensive infrastructure. It requires significant investment in infrastructure, which can be expensive. While cloud...
What needs improvement with Apache Spark?
The Spark solution could improve in scheduling tasks and managing dependencies. Spark alone cannot handle sequential tasks, requiring environments like Airflow scheduler or scripts. For instance, o...
Which is better, AWS Lambda or Batch?
AWS Lambda is a serverless solution. It doesn’t require any infrastructure, which allows for cost savings. There is no setup process to deal with, as the entire solution is in the cloud. If you use...
What do you like most about AWS Lambda?
The tool scales automatically based on the number of incoming requests.
What is your experience regarding pricing and costs for AWS Lambda?
The pricing of AWS Lambda is reasonable. It's beneficial and cost-effective for users regardless of the number of instances used.
 

Comparisons

 

Overview

 

Sample Customers

NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
Netflix
Find out what your peers are saying about AWS Lambda vs. Apache Spark and other solutions. Updated: April 2025.
850,671 professionals have used our research since 2012.