Try our new research platform with insights from 80,000+ expert users

Hugging Face vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Hugging Face
Ranking in AI Development Platforms
5th
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
10
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
3rd
Average Rating
7.6
Reviews Sentiment
7.0
Number of Reviews
60
Ranking in other categories
Data Science Platforms (4th)
 

Mindshare comparison

As of January 2025, in the AI Development Platforms category, the mindshare of Hugging Face is 13.2%, up from 6.3% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 9.4%, down from 16.0% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

AshishKumar11 - PeerSpot reviewer
Open-sourced, reliable, and enables organizations to finetune data for business requirements
Hugging Face is a website that provides various open-source models. We use them to finetune models for our business. It is just like ChatGPT, but ChatGPT has paid sources. If we have to call an API, we must pay for it. However, Hugging Face has various open-source models like Llama 2 and Llama 3…
HéctorGiorgiutti - PeerSpot reviewer
Requires minimal maintenance, is scalable, and stable
The initial setup depends on the developer's knowledge of machine learning models as to whether it is easy or difficult. With a good understanding of these models, then we can get to work quickly in the environment. With 20 years of experience in IT, making applications on legacy platforms and non-web platforms, I have found that Azure has a very good implementation. The platform is so comprehensive that it doesn't matter what kind of work we do, we can find the tools needed to get the job done. In comparison to what I was doing five years ago, Azure is a great platform and I really enjoy working with it. We should allocate up to 12 percent of our project time to deployment. Depending on the complexity of the solution, we should expect to spend more time on deployment.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"There are numerous libraries available, and the documentation is rich and step-by-step, helping us understand which model to use in particular conditions."
"The tool's most valuable feature is that it shows trending models. All the new models, even Google's demo models, appear at the top. You can find all the open-source models in one place. You can use them directly and easily find their documentation. It's very simple to find documentation and write code. If you want to work with AI and machine learning, Hugging Face is a perfect place to start."
"My preferred aspects are natural language processing and question-answering."
"The product is reliable."
"What I find the most valuable about Hugging Face is that I can check all the models on it and see which ones have the best performance without using another platform."
"The tool's most valuable feature is that it's open-source and has hundreds of packages already available. This makes it quite helpful for creating our LLMs."
"Hugging Face provides open-source models, making it the best open-source and reliable solution."
"The solution is easy to use compared to other frameworks like PyTorch and TensorFlow."
"The solution is scalable."
"The most valuable feature is its compatibility with Tensorflow."
"The initial setup is very simple and straightforward."
"I've developed a couple of chatbots using Azure OpenAI, leveraging its documented solutions and APIs. The tools available make it straightforward to implement machine learning solutions. However, there are challenges, such as hallucinations and security issues, but overall, it works well and is quite fast, allowing for the development of interesting projects."
"Anyone who isn't a programmer his whole life can adopt it. All he needs is statistics and data analysis skills."
"The notebook feature allows you to write inquiries and create dashboards. These dashboards can integrate with multiple databases, such as Excel, HANA, or SQL Server."
"The most valuable feature of the solution is the availability of ChatGPT in the solution."
"One of the notable advantages is that it offers both a visual designer, which is user-friendly, and an advanced coding option."
 

Cons

"It can incorporate AI into its services."
"I've worked on three projects using Hugging Face, and only once did we encounter a problem with the code. We had to use another open-source embedding from OpenAI to resolve it. Our team has three members: me, my colleague, and a team leader. We looked at the problem and resolved it."
"Initially, I faced issues with the solution's configuration."
"The area that needs improvement would be the organization of the materials. It could be clearer and more systematic. It would be good if the layout was clear and we could search the models easily."
"Implementing a cloud system to showcase historical data would be beneficial."
"Most people upload their pre-trained models on Hugging Face, but more details should be added about the models."
"The solution must provide an efficient LLM."
"I believe Hugging Face has some room for improvement. There are some security issues. They provide code, but API tokens aren't indicated. Also, the documentation for particular models could use more explanation. But I think these things are improving daily. The main change I'd like to see is making the deployment of inference endpoints more customizable for users."
"We can create a label job, but we still have to use the Azure Machine Learning REST APIs, which are not yet supported in the Python SDK version 2."
"Easier customization and configuration would be beneficial."
"In the Machine Learning Studio, particularly the Designer part, which is essentially Azure's demo designer, there is room for improvement. Many customers and users tend to switch to Microsoft Azure Multi-Joiners, which is a more basic version, but they do so internally. One area that could use enhancement is the process of connecting components. Currently, every time you want to connect a component, such as linking it to your storage or an instance like EC2, you have to input your username and password repeatedly. This can be quite cumbersome. Google, for instance, has made it more user-friendly by allowing easy access for connecting services within a workspace. In a workspace, you can set up various resources like storage, a database cluster, machine learning studio, and more. When connecting these services, there's no need to enter your username and password each time, making it a more efficient process. Another aspect to consider is the role of the designer, and they were to integrate a large language model to handle various tasks, it could significantly enhance the overall scalability and usability of the platform."
"Integration with social media would be a valuable enhancement."
"Performance is very poor."
"It is not easy. It is a complex solution. It takes some time to get exposed to all the concepts. We're trying to have a CI/CD pipeline to deploy a machine learning model using negative actions. It was not easy. The components that we're using might have something to do with this."
"The interface is a bit overloaded."
"The solution must increase the amount of data sources that can be integrated."
 

Pricing and Cost Advice

"The solution is open source."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"We do not have to pay for the product."
"Hugging Face is an open-source solution."
"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"So, it's requires expensive machines to open services or open LLM models."
"The product's pricing is reasonable."
"There isn’t any such expensive costs and only a standard license is required."
"The solution operates on a pay-per-use model."
"When we got our first models and were ready for the user acceptance testing, our licensing fees were between €2,500 ($2,750 USD) and €3,000 ($3,300 USD) monthly."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
"The solution cost is high."
"On a scale from one to ten, with ten being overpriced, I would rate the price of this solution at six."
"There is a license required for this solution."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
831,071 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Manufacturing Company
11%
Computer Software Company
11%
University
10%
Financial Services Firm
10%
Financial Services Firm
12%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Hugging Face?
My preferred aspects are natural language processing and question-answering.
What needs improvement with Hugging Face?
Hugging Face could improve by implementing a search engine or chat bot feature similar to ChatGPT. This would aid developers in easily finding how to fine-tune models with specific data or get mode...
What is your primary use case for Hugging Face?
I use Hugging Face primarily to work with open LLM models. I recently started using the open LOM models and also use embedding models. I use these models to train custom data and monitor our deskto...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
Pricing is considered to be top-segment and should be improved. I rate the pricing as three or four on a scale of one to ten in terms of affordability.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Information Not Available
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Hugging Face vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: December 2024.
831,071 professionals have used our research since 2012.