Try our new research platform with insights from 80,000+ expert users

IBM Watson Machine Learning vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

IBM Watson Machine Learning
Ranking in AI Development Platforms
17th
Average Rating
8.0
Reviews Sentiment
7.1
Number of Reviews
7
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
5th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
Data Science Platforms (5th)
 

Mindshare comparison

As of February 2026, in the AI Development Platforms category, the mindshare of IBM Watson Machine Learning is 2.0%, up from 1.9% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 3.5%, down from 8.0% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Microsoft Azure Machine Learning Studio3.5%
IBM Watson Machine Learning2.0%
Other94.5%
AI Development Platforms
 

Featured Reviews

Anurag Mayank - PeerSpot reviewer
Manager at Maruti Suzuki India Limited
A highly efficient solution that delivers the desired results to its users
I had not considered how the solution could be improved because I was focused on how it was helping me to solve my issues. If I consider how we want to use it in our organization, certain areas of improvement can be addressed. For instance, we want to use it with Generative AI, not like ChatGPT, but in a way intended for industrial use. It would be beneficial to incorporate more AI into the solution.
reviewer2722962 - PeerSpot reviewer
Data Scientist
Platform accelerates model development, enhances collaboration, and offers efficient deployment
The best features Microsoft Azure Machine Learning Studio offers include deep integration with Python notebooks and Azure Data Lake, which allows me to import external data, and through the pipeline, I can build my models, performing what is called data injection for my model building, making that deep integration quite interesting to use. Microsoft Azure Machine Learning Studio is a powerful platform for those already in the Azure ecosystem because it allows for scalability and provides a good environment for reproducibility, as well as collaboration tools, all designed and packaged in one place, which makes it outstanding. Microsoft Azure Machine Learning Studio has positively impacted my organization by reducing our project delivery times and increasing the pace at which we work, allowing us to focus on other more important tasks. Using Microsoft Azure Machine Learning Studio has reduced our model development time from approximately four hours to about two hours.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Scalability-wise, I rate the solution ten out of ten."
"It is has a lot of good features and we find the image classification very useful."
"I was particularly interested in trying the AutoML feature to see how it handles data and proposes new models. The variety of models it provides is impressive."
"The solution is very valuable to our organization due to the fact that we can work on it as a workflow."
"The most valuable aspect of the solution's the cost and human labor savings."
"It has improved self-service and customer satisfaction."
"We can enable and change developer productivity with artificial intelligence-recommended code based on natural language input or exciting source code."
"The most valuable feature of Microsoft Azure Machine Learning Studio is the ease of use for starting projects. It's simple to connect and view the results. Additionally, the solution works well with other Microsoft solutions, such as Power Automate or SQL Server. It is easy to use and to connect for analytics."
"I've developed a couple of chatbots using Azure OpenAI, leveraging its documented solutions and APIs. The tools available make it straightforward to implement machine learning solutions. However, there are challenges, such as hallucinations and security issues, but overall, it works well and is quite fast, allowing for the development of interesting projects."
"The integration with Azure services enhances workflow and meets my expectations."
"When you import the dataset you can see the data distribution easily with graphics and statistical measures."
"The visualizations are great. It makes it very easy to understand which model is working and why."
"The product's standout feature is a robust multi-file network with limited availability."
"It is very easy to test different kinds of machine-learning algorithms with different parameters. You choose the algorithm, drag and drop to the workspace, and plug the dataset into this component."
"It's easy to use."
 

Cons

"In future releases, I would like to see a more flexible environment."
"They should add more GPU processing power to improve performance, especially when dealing with large amounts of data."
"Honestly, I haven't seen any comparative report that has run the same data through two different artificial intelligence or machine learning capabilities to get something out of it. I would love to see that."
"The supporting language is limited."
"If I consider how we want to use it in our organization, certain areas of improvement can be addressed. For instance, we want to use it with Generative AI, not like ChatGPT, but in a way intended for industrial use."
"Sometimes training the model is difficult."
"Scaling is limited in some use cases. They need to make it easier to expand in all aspects."
"There's room for improvement in terms of binding the integration with Azure DevOps."
"The regulatory requirements of the product need improvement."
"Overall, the icons in the solution could be improved to provide better guidance to users. Additionally, the setup process for the solution could be made easier."
"I cannot comment on specific improvements yet as we are still exploring and need more time to identify the areas that require enhancements."
"Technical support could improve their turnaround time."
"Microsoft Azure Machine Learning Studio worked okay for me, so right now, I don't have any room for improvement in mind for it. What I'd like added to Microsoft Azure Machine Learning Studio in its next version is a categorization for use cases or a template that makes the use cases simple to map out, for example, for healthcare, medical, or finance use cases, etc. This would be very helpful for users of Microsoft Azure Machine Learning Studio, especially for beginners."
"A problem that I encountered was that I had to pay for the model that I wanted to deploy and use on Azure Machine Learning, but there wasn't any option that that model can be used in the designer."
"When you use different Microsoft tools, there are different pricing metrics. It doesn't make sense. The pricing metrics are quire difficult to understand and should be either clarified or simplified. It would help us sell the solution to customers."
 

Pricing and Cost Advice

"I've only been using the free tier, but it's quite competitive on a service basis."
"The pricing model is good."
"The product is not that expensive."
"The licensing cost is very cheap. It's less than $50 a month."
"I rate the solution's pricing a four on a scale of one to ten, where one is cheap, and ten is expensive."
"In terms of pricing, for any cloud solution, you should know the tricks of the trade and how to use it, otherwise, you'll end up paying a lot of money irrespective of the cloud provider, so at least for Microsoft Azure Machine Learning Studio pricing versus AWS, I would rate it three out of five, with one being the most expensive, and five being the cheapest. It could be cheaper, but you also have to be careful when choosing the plans, for example, consider the architecture and a lot of other factors before choosing your plan, if you don't want to end up paying more. If your cloud provider has an optimizer that seems to be available in every provider, that would keep alerting you in terms of resources not being used as much, then that would help you with budgeting."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
"I used the free student license for a few months to operate the solution, but I'll have to pay for it if I want to do more now."
"It is less expensive than one of its competitors."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
881,455 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
University
14%
Financial Services Firm
12%
Educational Organization
9%
Computer Software Company
9%
Financial Services Firm
11%
Manufacturing Company
9%
Computer Software Company
8%
Performing Arts
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
By reviewers
Company SizeCount
Small Business23
Midsize Enterprise6
Large Enterprise30
 

Questions from the Community

What needs improvement with IBM Watson Machine Learning?
Sometimes training the model is difficult. We need to have at least a few different components to evaluate and understand the behavior of different users to have a very, very high accuracy in the m...
What is your primary use case for IBM Watson Machine Learning?
We use different artificial intelligence models to build questions and get answers for clients.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Information Not Available
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about IBM Watson Machine Learning vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: December 2025.
881,455 professionals have used our research since 2012.