Try our new research platform with insights from 80,000+ expert users

IBM Watson Machine Learning vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

IBM Watson Machine Learning
Ranking in AI Development Platforms
16th
Average Rating
8.0
Reviews Sentiment
7.1
Number of Reviews
7
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
5th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
Data Science Platforms (5th)
 

Mindshare comparison

As of January 2026, in the AI Development Platforms category, the mindshare of IBM Watson Machine Learning is 2.0%, up from 2.0% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 3.4%, down from 8.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Microsoft Azure Machine Learning Studio3.4%
IBM Watson Machine Learning2.0%
Other94.6%
AI Development Platforms
 

Featured Reviews

Anurag Mayank - PeerSpot reviewer
Manager at Maruti Suzuki India Limited
A highly efficient solution that delivers the desired results to its users
I had not considered how the solution could be improved because I was focused on how it was helping me to solve my issues. If I consider how we want to use it in our organization, certain areas of improvement can be addressed. For instance, we want to use it with Generative AI, not like ChatGPT, but in a way intended for industrial use. It would be beneficial to incorporate more AI into the solution.
reviewer2722962 - PeerSpot reviewer
Data Scientist
Platform accelerates model development, enhances collaboration, and offers efficient deployment
The best features Microsoft Azure Machine Learning Studio offers include deep integration with Python notebooks and Azure Data Lake, which allows me to import external data, and through the pipeline, I can build my models, performing what is called data injection for my model building, making that deep integration quite interesting to use. Microsoft Azure Machine Learning Studio is a powerful platform for those already in the Azure ecosystem because it allows for scalability and provides a good environment for reproducibility, as well as collaboration tools, all designed and packaged in one place, which makes it outstanding. Microsoft Azure Machine Learning Studio has positively impacted my organization by reducing our project delivery times and increasing the pace at which we work, allowing us to focus on other more important tasks. Using Microsoft Azure Machine Learning Studio has reduced our model development time from approximately four hours to about two hours.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution is very valuable to our organization due to the fact that we can work on it as a workflow."
"It is has a lot of good features and we find the image classification very useful."
"Scalability-wise, I rate the solution ten out of ten."
"I was particularly interested in trying the AutoML feature to see how it handles data and proposes new models. The variety of models it provides is impressive."
"We can enable and change developer productivity with artificial intelligence-recommended code based on natural language input or exciting source code."
"The most valuable aspect of the solution's the cost and human labor savings."
"It has improved self-service and customer satisfaction."
"The solution is very fast and simple for a data science solution."
"It's good for citizen data scientists, but also, other people can use Python or .NET code."
"I like that it's totally easy to use. They have an AutoML solution, and their machine learning model is highly accurate. They also have a feature that can explain the machine learning model. This makes it easy for me to understand that model."
"It is a scalable solution…It is a pretty stable solution…The solution's initial setup process was pretty straightforward."
"Split dataset, variety of algorithms, visualizing the data, and drag and drop capability are the features I appreciate most."
"Their support is helpful."
"The most valuable feature is its compatibility with Tensorflow."
"Visualisation, and the possibility of sharing functions are key features."
 

Cons

"If I consider how we want to use it in our organization, certain areas of improvement can be addressed. For instance, we want to use it with Generative AI, not like ChatGPT, but in a way intended for industrial use."
"They should add more GPU processing power to improve performance, especially when dealing with large amounts of data."
"In future releases, I would like to see a more flexible environment."
"Scaling is limited in some use cases. They need to make it easier to expand in all aspects."
"Honestly, I haven't seen any comparative report that has run the same data through two different artificial intelligence or machine learning capabilities to get something out of it. I would love to see that."
"The supporting language is limited."
"Sometimes training the model is difficult."
"In terms of improvement, I'd like to have more ability to construct and understand the detailed impact of the variables on the model. Their algorithms are very powerful and they explain overall the net contribution of each of the variables to the solution. In terms of being able to say to people "If you did this, you'll get this much more improvement" it wasn't great."
"Technical support could improve their turnaround time."
"Operability with R could be improved."
"It is not easy. It is a complex solution. It takes some time to get exposed to all the concepts. We're trying to have a CI/CD pipeline to deploy a machine learning model using negative actions. It was not easy. The components that we're using might have something to do with this."
"The data processor can pose a bit of a challenge, but the real complexity is determined by the skill of the implementation team."
"One problem I experience is that switching between multiple accounts can be difficult. I don't think there are any major issues. Mostly, the biggest challenge is to identify business solutions to this. The tool should keep on updating new algorithms and not stay static."
"Microsoft should also include more examples and tutorials for using this product.​"
"The speed of deployment should be faster, as should testing."
 

Pricing and Cost Advice

"I've only been using the free tier, but it's quite competitive on a service basis."
"The pricing model is good."
"I rate the solution's pricing a four on a scale of one to ten, where one is cheap, and ten is expensive."
"It is less expensive than one of its competitors."
"The pricing for Microsoft products can be complex due to changes and being cloud-based, so it's not straightforward. I've been familiar with it for years, but sometimes details about product licenses and distribution can be unclear. For Microsoft Azure Machine Learning Studio specifically, I would rate the price a six out of ten."
"The solution operates on a pay-per-use model."
"When we got our first models and were ready for the user acceptance testing, our licensing fees were between €2,500 ($2,750 USD) and €3,000 ($3,300 USD) monthly."
"We pay only the Azure costs for what we use, which involves some subscription costs. But essentially, you pay for what you use. There are no extra costs in addition to the standard licensing fees."
"I rate the product price as a nine on a scale of one to ten, where ten means it is very expensive."
"In terms of pricing, for any cloud solution, you should know the tricks of the trade and how to use it, otherwise, you'll end up paying a lot of money irrespective of the cloud provider, so at least for Microsoft Azure Machine Learning Studio pricing versus AWS, I would rate it three out of five, with one being the most expensive, and five being the cheapest. It could be cheaper, but you also have to be careful when choosing the plans, for example, consider the architecture and a lot of other factors before choosing your plan, if you don't want to end up paying more. If your cloud provider has an optimizer that seems to be available in every provider, that would keep alerting you in terms of resources not being used as much, then that would help you with budgeting."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
881,346 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
University
14%
Financial Services Firm
12%
Computer Software Company
10%
Educational Organization
9%
Financial Services Firm
11%
Manufacturing Company
9%
Computer Software Company
8%
Performing Arts
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
By reviewers
Company SizeCount
Small Business23
Midsize Enterprise6
Large Enterprise30
 

Questions from the Community

What needs improvement with IBM Watson Machine Learning?
Sometimes training the model is difficult. We need to have at least a few different components to evaluate and understand the behavior of different users to have a very, very high accuracy in the m...
What is your primary use case for IBM Watson Machine Learning?
We use different artificial intelligence models to build questions and get answers for clients.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Information Not Available
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about IBM Watson Machine Learning vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: December 2025.
881,346 professionals have used our research since 2012.